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Free quantum field theory in flat space-time is often believed to be well established holding no
surprises. We hope, by the end of this paper to have demonstrated that surprises still exist. For
example, we will show that a uniformly accelerated atom in Minkowski space-time emits entangled
photon pairs in a squeezed state which mimics entanglement of the Minkowski vacuum. Similar
emission of photon pairs occurs if an atom is held above the black hole event horizon. Namely, a
ground-state atom becomes excited by emitting a “negative” energy photon under the horizon and
then spontaneously decays back to the ground state by emitting a positive energy photon outside
the horizon, which propagates away from the black hole.

I. INTRODUCTION

The major results reported in this paper are given in Fig. 1. In Fig. 1a we depict a ground-state atom moving in
the right Rindler wedge with an acceleration a which becomes excited by emitting a photon into the superposition
of a right-propagating Unruh-Minkowski (UM) mode F2Ω, where Ω = ωc/a and ω is the atomic transition frequency
in the atom’s frame, and a left-propagating mode G2Ω. The mode F2Ω is mostly localized above the t = z/c Rindler
horizon, and G2Ω is mostly localized below the t = − z

c horizon. The excited atom then decays to the ground state by
emitting a sum of a right-propagating photon into the Unruh-Minkowski mode F1Ω which is mostly localized below
the t = z/c horizon, and a left propagating mode G1Ω mostly localized above the t = −z/c horizon. The mode
emitted via excitation of the atom, is thus mostly located in regions of the spacetime away from the atom, while the
mode emitted during the de-excitation of the atom F1Ω +G1Ω is orthogonal to the label 1 mode, and is largest in the
region around the atom.
In the following we will concentrate on the calculation of F , the right-propagating modes, but the calculations for

the G modes is essentially identical. One could also make the detector sensitive to only the right going modes by
coupling the detector to 1

2 (
∂
∂τ

− ∂
∂ρ
)φ(t, x). instead of to ∂φ

∂τ
where τ is the proper time along the path of the atom,

and ρ is the orthogonal spatial coordinate at the atom.
In Fig. 1b we depict a ground-state atom held fixed above the event horizon of a static black hole (BH) in

Schwarzschild coordinates t, r. It is uniformly accelerated in the Kruskal–Szekeres coordinates (T,X) through the
Hartle-Hawking vacuum (which could also be called the Kruscal, in analogy with the Minkowski vacuum). The atom
becomes excited by emitting a right-propagating photon into the Unruh-Schwarzschild (US) mode F2Ω +G2Ω which
is mostly localized above the T = X line or under the T = −X line, that is behind the BH horizons. The excited
atom then decays to the ground state by emitting a right-propagating photon into the US mode F1Ω + G1Ω which
is mostly localized outside the BH horizon. The right propagating modes (F modes) propagate away from the black
hole to infinity while the others propagate into the black hole horizon.

In both the Unruh and Hawking radiation the combination of emission beyond the horizon associated with the
F2Ω mode and spontaneous emission into F1Ω mode yields entangled states of the two photon pair. This two photon
squeezed/entangled state takes the form

|Ψ〉 =
(

1 + βâ†2Ωâ
†
1Ω

)

|0〉 , (1)

where β characterizes small but important correlation between the modes inside (F2Ω) and outside (F1Ω) the horizon

associated with the photon creation operators â†2Ω and â†1Ω respectively.
From a quantum optical point of view, the Unruh effect can be thought of, and calculated, as a result of virtual

photons made real due to accelerating an atom. The probability of finding the atom excited (and a plane-wave photon
emitted) is found to be [1]

P =
2πcg2

aω

1

exp
(

2πωc
a

)

− 1
, (2)

where g is the atom-field coupling constant and a is the atom’s acceleration.
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FIG. 1: (a) A ground-state atom accelerated in the wedge I goes to the excited state |a〉 while emitting a photon into the
Unruh-Minkowski (UM) mode F2Ω which is mostly located in the Future wedge and wedge II by the ratio of the Boltzmann
factor for temperature a/(2πc) . Subsequently the atom spontaneously decays to the ground state |b〉 emitting a photon into
the UM mode F1Ω+G1Ω which is mostly located in the same wedge as the atom. (b) A ground-state atom held fixed above the
horizon of a Schwarzschild black hole goes to the excited state while emitting a photon into Unruh-Schwarzschild (US) mode
F2Ω which exists mostly in the “Future” wedge below the event horizon. Subsequently the atom spontaneously decays to the
ground state emitting a photon into the US mode F1Ω which is located mostly above the horizon.

But there is more to the story. When a ground-state atom becomes excited by emitting an acceleration radiation
photon into, say, the left Rindler wedge, the atom can go back to the ground state by spontaneously emitting another
photon into the right Rindler wedge. This entangled two-photon configuration can be (and is) well explained by
nothing much more than operator algebra of the type discussed above. One may then well ask if there is a quantum
optical explanation for the entangled photon pairs just as we have for the acceleration radiation. The answer is yes
and is the subject of the present paper.
To put the present paper in perspective, we recall that the Unruh effect, that accelerated atoms see the vacuum as

a thermal state, can be realized without introducing atoms at all. That is using the relation between Minkowski (âν)

and Rindler (b̂Ω) [2] photon operators as

b̂Ω =

∫ ∞

0

dν
[

αΩν âν − βΩν â
†
ν

]

, (3)

where the Bogoliubov coefficients are [2, 4]

βΩν = − c

2πa

√

Ω

ν
e−

πcΩ
2a

(cν

a

)i cΩ
a

Γ

(

−i
cΩ

a

)

, (4)

and Γ(x) is the Gamma function. The expectation value of the Rindler photon number operator for the Minkowski
vacuum is then found to be

〈0M | b̂†Ωb̂Ω |0M 〉 =
∫ ∞

0

dν|βΩν |2 =
1

e2πcΩ/a − 1
. (5)

Indeed, the entanglement of photons [5] between right and left Rindler wedges is a hallmark of acceleration ra-
diation having much in common with quantum optics. The Unruh effect can be understood as a process of super-
oscillations[16], in which a function, composed purely of modes with a limited range of frequencies can have oscillations
outside that range in certain regions. In this case, the limitation is that the frequency is limited to purely negative
frequencies (for the modes associated with the creation operator of the fields). On excitation of the atom, the acceler-
ated atom probes that region, and the positive frequencies associated with the creation operators cause an excitation
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of the field, a particle emission by the atom. The accelerated atom makes a transition from the ground state to an
excited state while emitting a photon into a Minkowski vacuum [6]. From another point of view, Unruh radiation
can be viewed as (Rindler) photons existing as a thermal bath in a uniformly accelerated reference frame [2, 7]. The
Rindler state vacuum can be obtained by operating on the Minkowski vacuum with UM creation operators [5]. From
a quantum optics vantage, this amounts to applying a squeeze operator to the Rindler vacuum generating bi-photon
pairs of creation operators for photons corresponding to positively and negatively accelerated frames.
This is simply a feature of the Minkowski vacuum, when viewed from the modes naturally associated with the

accelerated frame. There is however another effect, intimately involving the atom.
In quantum optics correlated photon pairs can come from, for example, two photon down conversion generating

signal photons of frequency ν1 and idler photon of frequency ν2. That is, the photon pair operation is governed by

the bi-photon operator â†1â
†
2, where â†1 (â†2) is the creation operator of the idler (signal) photon.

In the present paper we develop the theory of bi photons generated by atoms emitting acceleration radiation

(described by operator â†2) and being excited in the process, and thereafter spontaneously emitting a photon (described

by operator â†1). This creates an entangled pair of photons, ordinary Minkowski photons. We apply the same process
to generate entangled pairs in Hawking [9] and Cherenkov [10] radiation.

The interplay between aspects of general relativity and quantum optics yields insights and flags open questions.
See, e.g., recent work on acceleration radiation from an atom falling into a black hole [11], which is analogous to
excitation of a fix atom by a uniformly accelerated mirror in Minkowski space-time [12]. More recently [13] we have
emphasized that:

“Emission of photons by atoms can occur into modes which extend into a region causally disconnected
with the emitter. For example, a uniformly accelerated ground-state atom emits a photon into the Unruh–
Minkowski mode which is exponentially larger in the causally disconnected region. This makes an impres-
sion that photon emission is acausal. Here we show that conventional quantum optical analysis yields that
a detector atom will not detect the emitted photon in the region non-causally connected with the emitter.
However, joint excitation probability of atoms in the causally disconnected regions can be correlated due
to entanglement of Minkowski vacuum and be much large than the product of independent excitation
probabilities”.

In the present note we show that the vacuum entanglement referred to above can be demonstrated via the simple
toy model depicted in Fig. 1a. The message of Fig. 1a is that the atom (coming from infinity) is accelerated through
wedge I. That is the atom with high velocity travels along the z axis from infinity, it slows down, stops and and then
keeps accelerating back out to infinity. The atom emits an acceleration radiation photon which is predominantly in
the wedge II and subsequently spontaneously emits a photon into located dominantly in wedge I. As is shown below
these photons are entangled and are in a two mode squeezed state.
In quantum optics [14] the two mode squeezed state is generated by the action of the unitary squeeze operator

Ŝ = eξ
∗â1â2+ξâ†

1
â†
2

on the two photon vacuum state |0102〉, where â1(â2) and â†1(â
†
2) are the usual annihilation and creation operators.

In particular, for weak squeezing, such that ξ ≪ 1, we have

|Ψ〉 = [1 + ξâ†1â
†
2]|0102〉.

The two-mode squeezed state can be generated in a nonlinear crystal by a parametric down conversion process in an
optical cavity [15], in which a strong (classical) laser field produces a pair of photons 1 and 2 as described by the
Hamiltonian

Ĥ = ~g
(

â†1â
†
2 + â1â2

)

,

where the coupling strength g is the effective Rabi frequency of the driving field. Schrodinger equation yields that
the state of the generated field is

|Ψ(t)〉 = e−ig(â1â2+â†
1
â†
2
)t|0102〉,

which is a two-mode squeezed state. To lowest order, the down conversion process produces the “squeezed” state

|Ψ〉 ∼= (1− igτ â†1â
†
2)|0102〉,
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where τ is the duration of the short pulse driving field in this simple model. In the squeezed state, the photon
numbers in the modes are correlated. Namely, the photon numbers in each mode n1 and n2 fluctuate obeying thermal
distribution, but the difference n1 − n2 does not fluctuate. That is, if there are n photons in mode 1 then with unit
probability there are n photons in the mode 2.
It is interesting that Minkowski vacuum |0M 〉 is a squeezed state in terms of Rindler photons, namely, in terms of

Rindler states [5]

|0M 〉 =
∏

ν>0

(

1− e−2πcν/a
)

eexp(−
πcν
a )(b̂†R1ν b̂

†
R2ν+b̂†L1ν b̂

†
L2ν) |0R〉 , (6)

where |0R〉 refers to Rindler vacuum, b̂†R1ν and b̂†R2ν (b̂†L1ν and b̂†L2ν) are creation operators of Rindler photons in the
right (left) propagating Rindler modes

φ1ν =

√

a

νc
(∓z − ct)i

νc
a θ(∓z − ct) (7)

and

φ2ν =

√

a

νc
(ct± z)−i νc

a θ(ct± z). (8)

Here a > 0 is a parameter which has dimension of acceleration.
Rindler modes φ1ν and φ2ν are solutions of the wave equation and for ν > 0 have positive norm (defined as the

Klein–Gordon inner product). The mode functions (7) and (8) are non-zero in half of the t − z plane and form a
complete basis set.
In Section II we present the detailed analysis of the acceleration radiation induced entangling of UMmodes F1Ω+G1Ω

and F2Ω +G2,Ω and is essentially a two-mode squeezed state. In Section III we present the analysis of the Hawking
radiation which consists of entangled photon pairs localized above and below the BH event horizon. In Section IV we
show how “squeezed/entangled” radiation is related to Cherenkov radiation. Section V is a discussion and conclusion.

II. GENERATION OF SQUEEZED PHOTON STATES BY ACCELERATED ATOMS

Next we consider an electrically neutral two-level atom with a transition angular frequency ω which moves along the
trajectory t(τ), z(τ) in vacuum, where τ is the proper time of the atom. The atom is coupled to the electromagnetic

field. For simplicity we approximate the field as a scalar field described by the operator Φ̂(t, z) and consider dimension
1 + 1. We will assume the following form of the interaction Hamiltonian between the atom and the scalar field

V̂ (τ) = g
(

σ̂e−iωτ + σ̂†eiωτ
) ∂

∂τ
Φ̂(t(τ), z(τ)), (9)

where g is the atom-field coupling constant, and σ̂ and σ̂† are the atomic lowering and raising operators. Since the
atom feels the local value of the field, the operator Φ̂ is evaluated at the atom’s position t(τ), z(τ). For simplicity we
consider only the right-propagating waves. The results can be generalized to include the left-propagating waves in a
straightforward way.
In the usual quantization procedure, one splits the solutions to the field equations into two sets of Fourier modes.

To make the system as simple as possible, we will examine a massless scalar field φ in 1+1 dimensions, although the
results, while more complex for massive fields - scalar or vector, apply in higher dimensions as well. The field equation
of motion is taken as

(

1

c2
∂2

∂t2
− ∂2

∂z2

)

φ(t, z) = 0. (10)

The solutions of Eq. (10) can be written as sums of the Fourier transform modes

φk(t, x) = e−i(νt−kz) (11)

with ν2 = k2 or ν = ±k.
In the usual quantization procedure, one associates the modes with ν > 0 with the annihilation operators for the

field âk and ν < 0 with the creation operators â†k, which obey the commutation relations [âk, â
†
k′ ] = δkk′ . In order
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that the field strength φ and its conjugate momentum π = c∂L/∂φ̇ = (1/c)∂φ∗/∂t obey the standard commutation
relations, we must have

i

2c

∫ ∞

−∞

(

φ∗
k

∂φk′

∂t
− ∂φ∗

k

∂t
φk′

)

dz = δkk′ . (12)

For our purposes, however, we will choose a different set of modes, often called the Unruh-Minkowski (UM) modes.
They were discovered by Unruh in 1976 [2]. The right-propagating UM modes are defined as [5]

F1Ω(t, z) =
|t− z/c|iΩ

√

2Ω sinh(πΩ)
e−

πΩ

2
sign(t−z/c), (13)

F2Ω(t, z) =
|t− z/c|−iΩ

√

2Ω sinh(πΩ)
e

πΩ

2
sign(t−z/c), (14)

where Ω > 0 is a parameter which is proportional to the photon frequency in the Rindler space [3]. In wedge I, z > ct
and the potentially large factor eπΩ/2 appears in Eq. (13), which means that the mode F1Ω is mostly in wedge I (see
Fig. 1a) and has positive frequency in wedge II even though it is associated with a creation operator (negative norm).
On the other hand, the mode F2Ω is exponentially larger when ct > z, that is in wedge II. The left-moving modes are
obtained from Eqs. (13) and (14) by replacing z → −z.

The functions (13) and (14) are the limit for positive ǫ → 0 of the expression

F1Ω(t, z) =
(t− z

c − iǫ)iΩ
√

2Ω sinh(πΩ)
e−

πΩ

2 ,

F2Ω(t, z) =
(t− z

c − iǫ)−iΩ

√

2Ω sinh(πΩ)
e

πΩ

2 .

These functions are analytic and bounded in the upper half complex plane of the complex field argument t− z/c for

all values of Ω > 0, just as the functions e−iν(t−z/c) are for ω > 0. The factors 1/
√

2Ω sinh(πΩ) are the normalization
factors under the Klein–Gordon norm.
Expansion of the right-moving part of the field operator in terms of the UM modes (13) and (14) reads [5]

Φ̂ =
∑

Ω>0

(

F1Ωâ1Ω + F2Ωâ2Ω + F ∗
1Ωâ

†
1Ω + F ∗

2Ωâ
†
2Ω

)

, (15)

where â1Ω and â2Ω are the UM photon annihilation operators. â1Ω and â2Ω can be written as sums of the plane-wave
annihilation operators âk introduced above. Thus, the vacuum state for the UM photons is the usual Minkowski
vacuum |0M 〉.
We consider a uniformly accelerated atom moving along the trajectory

t(τ) =
c

a
sinh

(aτ

c

)

, z(τ) =
c2

a
cosh

(aτ

c

)

(16)

in Minkowski space-time. In Eq. (16), τ is the proper time of the atom. If a > 0 (a < 0), the atom moves in the right
(left) Rindler wedge (see Fig. 1a).
The UM modes (13) and (14) are a convenient choice for the description of Unruh acceleration radiation. Namely,

a ground-state atom with a transition frequency ω moving in the right Rindler wedge with an acceleration a (see Fig.
1a) in Minkowski vacuum |0M 〉 can become excited by emitting a right-propagating photon into the single UM mode
F2Ω, where Ω = ωc/a [5, 17]. The excited atom can then decay to the ground state by emitting a right-propagating
photon into the UM mode F1Ω. As a result of these processes, the final state of the field will have two photons in UM
modes F1Ω and F2Ω which are entangled.
To the lowest order, we find for the final state of the field is

|Ψ〉 = |0M 〉 −
(g

~

)2
∫ ∞

−∞
dτ ′e−iωτ ′ eiαΩτ ′

e
πΩ

2

√

2Ω sinh(πΩ)

∫ τ ′

−∞
dτ ′′eiωτ ′′ e−iαΩτ ′′

e−
πΩ

2

√

2Ω sinh(πΩ)
|12Ω11Ω〉 , (17)
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where α = a/c. One can write Eq. (17) as

|Ψ〉 =
(

1 +
G

2Ω sinh(πΩ)
â†2Ωâ

†
1Ω

)

|0M 〉 , (18)

where G (not to be confused with the modes G{1,2}Ω) is a factor containing the time integral

G = −
(g

~

)2
∫ ∞

−∞
dτ ′e−iωτ ′

eiαΩτ ′

∫ τ ′

−∞
dτ ′′eiωτ ′′

e−iαΩτ ′′

. (19)

The factor G is large if the resonant condition Ω = ωc/a is satisfied.

III. GENERATION OF SQUEEZED PHOTON STATES BY ATOMS HELD ABOVE BLACK HOLE

HORIZON

The Schwarzschild metric of a non-rotating black hole in 1+1 dimension is given by

ds2 =
(

1− rg
r

)

c2dt2 − 1

1− rg
r

dr2, (20)

where rg = 2GM/c2 is the gravitational radius, and t, r are Schwarzschild coordinates.
Kruskal-Szekeres coordinates on a black hole geometry are defined in terms of the Schwarzschild coordinates t, r as

T =

√

r

rg
− 1e

r
2rg sinh

(

ct

2rg

)

, (21)

X =

√

r

rg
− 1e

r
2rg cosh

(

ct

2rg

)

, (22)

for r > rg, and

T =

√

1− r

rg
e

r
2rg cosh

(

ct

2rg

)

, (23)

X =

√

1− r

rg
e

r
2rg sinh

(

ct

2rg

)

, (24)

for 0 < r < rg.
In 1+1 dimension, in the Kruskal-Szekeres coordinates, the Schwarzschild metric is conformally invariant to the

Minkowski metric

ds2 =
4r3g
r

e
− r

rg
(

dT 2 − dX2
)

. (25)

where r is a function of T 2 −X2 which has value of rg when T 2 −X2 = 0. Thus, one can choose mode functions in
the Kruskal-Szekeres coordinates as functions of T ±X.
Again, although the atom couples both to the right and left moving modes (F{1,2}Ω and G{1,2}Ω) we again concen-

trate on the right movers.
Here we consider a two-level (a (not to be confused with the acceleration) is the excited level and b is the ground

state) atom with transition angular frequency ω near eternal non-rotating BH of mass M . If the atom does not move
in the Schwarzschild coordinates, that is atom’s trajectory is r(t) = r0 > rg, then in the Kruskal-Szekeres coordinates
the atom is uniformly accelerated along the trajectory

T (t) =
√

2αr0/c− 1eαr0/c sinh (αt) , (26)

X(t) =
√

2αr0/c− 1eαr0/c cosh (αt) , (27)
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where α = c/2rg. One can write these equations as

T (τ) =
√

2αr0/c− 1eαr0/c sinh

(

ατ
√

1− rg/r0

)

, (28)

X(τ) =
√

2αr0/c− 1eαr0/c cosh

(

ατ
√

1− rg/r0

)

, (29)

where τ = t
√

1− rg/r0 is the proper time of the atom.
As in the case of the Rindler horizon in the flat Minkowski space-time, the black hole event horizon T = X divides

the Schwarzschild space-time for right-running waves into two regions. The outgoing positive frequency modes which
are analogous to the right-running UM modes of the previous section on acceleration radiation, are given by [2]

F1Ω(T,X) =
|T −X|iΩ

√

2Ω sinh(πΩ)
e−

πΩ

2
sign(T−X), (30)

F2Ω(T,X) =
|T −X|−iΩ

√

2Ω sinh(πΩ)
e

πΩ

2
sign(T−X), (31)

where Ω > 0. The corresponding photon annihilation operators we denote as Â1Ω, Â2Ω. We assume that state of the
field is a vacuum state with respect to the Unruh-Schwarzschild (US) modes (30) and (31). We denote it as |0K〉. For
simplicity we consider only the outgoing modes.
Along the atom’s trajectory (28), (29), the US mode functions (30) and (31) are

F1Ω(T (τ), X(τ)) = (2αr0/c− 1)
iΩ

2
e

πΩ

2 eiαr0Ω/c

√

2Ω sinh(πΩ)
e
− iαΩτ√

1−rg/r0 , (32)

F2Ω(T (τ), X(τ)) = (2αr0/c− 1)
− iΩ

2
e−

πΩ

2 e−iαr0Ω/c

√

2Ω sinh(πΩ)
e

iαΩτ√
1−rg/r0 , (33)

that is from the atom’s perspective, the photon described by the mode function F1Ω has positive frequency, while the
photon F2Ω has negative frequency. The photon is resonant with the atom for Ω =

√

1− rg/r0ω/α, where ω is the
atomic transition frequency. As a result, the ground-state atom can become excited by emitting a photon into the
mode F2Ω. Subsequently the atom can go to the ground state by spontaneously emitting a photon into the mode
F1Ω (see Fig. 1b). As in the case of an atom accelerated in Minkowski space-time, these two processes generate a
two-photon entangled state

|Ψ〉 =
(

1 +
G

2Ω sinh(πΩ)
Â†

2ΩÂ
†
1Ω

)

|0K〉 , (34)

where G is a factor containing the time integral

G = −
(g

~

)2
∫ ∞

−∞
dτ ′e−iωτ ′

e
iαΩτ′√
1−rg/r0

∫ τ ′

−∞
dτ ′′eiωτ ′′

e
− iαΩτ′′√

1−rg/r0 . (35)

According to Eq. (31), the mode function F2Ω is exponentially (eπaω) larger in the region T > X, and, hence,
the probability is high that this photon falls into the black hole singularity rather than propagating to infinity. In
contrast, the mode function F1Ω of the spontaneously emitted photon is exponentially larger by the same factor in
the region X > T , and, therefore, the spontaneously emitted photon escapes probably escapes from the black hole

region to infinity (in thee dimensions, if the frequencyω is less than a(L+1)
2π where L is the angular momentum of

the photon, the outward directed photon will, with very high probability, reflect back into the black hole, bouncing
off the momentum/curvature barrier for photons propagating out from the black hole horizon at r = rg. It is only
those photons with a high enough energy to get over those barriers which get out to infinity. It is also important
to note that far away from the black hole, the ”natural” modes are the equivalent of the Rindler modes, with time
dependence e−iωt not τ which represent what most would call the natural particle modes. The natural vacuum for
the Hartle-Hawking (Kruscal) modes is, for these Schwartzschild modes will be a thermal state, both incoming and
outgoing, with temperature 1/8πM(~/kBc

2), the Hawking temperature.
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IV. GENERATION OF SQUEEZED PHOTON STATES THROUGH THE CHERENKOV EFFECT

Entangled photon pairs can be generated by a similar mechanism if the ground-state atom is moving through a
medium with a constant velocity V greater than speed of light in the medium. For description of Cherenkov radiation
it is convenient to choose mode functions as plane waves which in the medium with refractive index n read (in the
lab frame)

ϕk(t, z) = e−i
c|k|
n t+ikz, (36)

where k is the photon wave vector. Here we consider dimension 1 + 1, and k can be both positive and negative. We
denote operators of the plane-wave photons (36) as ĉk. At the location of the atom moving with a constant velocity
V > 0 along the trajectory

t(τ) =
τ

√

1− V 2

c2

, z(τ) =
V τ

√

1− V 2

c2

,

the mode function ϕk takes the form ϕk(t(τ), z(τ)) = e−iντ , that is the atom senses harmonic oscillations of the field
with frequency

ν =
c|k|
n − V k
√

1− V 2

c2

.

From the perspective of the moving atom if V > c/n, photons propagating in the same direction as atom’s velocity
(k > 0) have negative frequency. This leads to Cherenkov radiation. That is, the atom can become excited by emitting
a photon in the forward direction with a wave-vector k2 such that

k2 =
ω
√

1− V 2

c2

V − c
n

, (37)

where ω is the atomic transition frequency in atom’s frame. Negative frequency of the Cherenkov photon in the atom’s
frame is analogous to the negative frequency of the UM photon in the frame of an accelerated atom.

Photons emitted in the backward direction (k < 0) have positive frequency. Thus, an excited atom can spon-
taneously decay to the ground state by emitting a photon in the backward direction with a wave-vector k1 such
that

k1 = −
ω
√

1− V 2

c2

V + c
n

. (38)

As in the case of an atom accelerated in Minkowski space-time, these processes generate a two-photon entangled state

|Ψ〉 =
(

1 +Gc†k2
c†k1

)

|0M 〉 , (39)

where G is a factor containing the time integral

G = −
(g

~

)2
∫ ∞

−∞
dτ ′e−iωτ ′

e

c|k1|
n

−V k1
√

1−V 2

c2

τ ′
∫ τ ′

−∞
dτ ′′eiωτ ′′

e

c|k2|
n

−V k2
√

1−V 2

c2

τ ′′

. (40)

G is large if the resonance conditions (37) and (38) are satisfied. The Cherenkov effect yields entanglement generation
between photons propagating in the forward and backward directions.

V. DISCUSSION AND SUMMARY

To put section II in perspective, we recall that Bogoliubov relations allow us to obtain an expression for the
Minkowski vacuum |0M 〉 in terms of excitation states of the Rindler vacuum |0R〉. That is we use the following

relations between operators for the Rindler modes b̂ν and the UM modes âν [13]

b̂1ν =
â1ν + e−πcν/aâ†2ν√

1− e−2πcν/a
, b̂2ν =

â2ν + e−πcν/aâ†1ν√
1− e−2πcν/a

, (41)
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and the the identities [13]

â1e
γâ†

1
â†
2 = eγâ

†
1
â†
2

(

â1 + γâ†2

)

, (42)

â2e
γâ†

1
â†
2 = eγâ

†
1
â†
2

(

â2 + γâ†1

)

, (43)

where γ = e−πcν/a. Multiplying both sides of Eq. (42) by |0M 〉, we obtain

â1e
γâ†

1
â†
2 |0R〉 = eγâ

†
1
â†
2

(

â1 + γâ†2

)

|0R〉 ∝ eγâ
†
1
â†
2 b̂1 |0R〉 = 0, (44)

That is if |0R〉 is the vacuum state for the Rindler photon operator b̂1, then

|0M 〉 = 1

N
eγâ

†
1
â†
2 |0R〉 (45)

is the vacuum state for the UM operator â1, where N is a normalization constant. Applying the identity (43), one

can show that Eq. (45) is also the vacuum state for the operator â2. Multiplying both sides of Eq. (45) by Ne−γâ†
1
â†
2 ,

we find

|0R〉 = Ne−γâ†
1
â†
2 |0M 〉 . (46)

The value of N is determined by the normalization 〈0R|0R〉 = 1, which yields

N =
1

√

∑∞
n=0 γ

2n
=
√

1− γ2.

For γ ≪ 1, Eq. (46) approximately can be written as

|0R〉 ≈
(

1− e−πcν/aâ†1â
†
2

)

|0M 〉 , (47)

which has the same exponential factor as Eq. (18) in the limit Ω ≫ 1

|Ψ〉 ≈
(

1 +
G

Ω
e−πΩâ†R2Ωâ

†
R1Ω

)

|0M 〉 . (48)

Having demonstrated in section III that the Unruh-Schwarzschild mode expansion applied to the BH problem is very
analogous to the acceleration radiation with Unruh-Minkowski modes, we conclude by making a key but somewhat
subtle point. Namely, the negative energy photon, which is associated with the mode F2Ω, in both cases is localized
below the “horizon”. This was already emphasized in [5] That is the F2Ω mode into which the atom emits the first
photon is exponentially large in the left wedge (t > z/c) in the case of Unruh acceleration radiation, and is likewise
exponentially large below the BH horizon (T > X). In the case of Hawking radiation the photon does not so much
“fall” into the BH, but rather is created under the event horizon because the mode function F2Ω is localized in this
region.
It would be interesting to look for similar effects in various analogs of the Unruh acceleration radiation [18–

20] and Cherenkov radiation. For example, a ground-state atom moving above a metal surface (see Fig. 2a) can
become excited by emitting a surface plasmon with wave vector in the direction of the atom’s motion [21]. Surface
plasmons are collective excitations of the electromagnetic field and metal electrons which propagate along the surface.
Electromagnetic field in the surface plasmon exponentially decays away from the surface as shown in Fig. 2a.
From the perspective of the moving atom, the surface plasmon frequency is Doppler shifted and for large wave

numbers k the frequency becomes negative (see Fig. 2b). In the moving frame associated with the atom, the ground-
state atom becomes excited by emitting surface plasmon with negative frequency which insures energy conservation.
The excited atom can then decay to the ground state by emitting a surface plasmon with positive frequency, e.g.,
with wave-vector opposite to the atom’s velocity. Thus generated pair of the surface plasmons is entangled.
We note that this also forms the basis for the Analog gravity program in which the black hole is modelled by a

trans-sonic fluid flow, and the quantum field by sound (or other waves) in the fluid. There also, the importance of
effects like the Cherenkov discussion above, where the fluid flow is faster then than the wave velocity plays a crucial
role.(see for example Schuetzhold and Unruh [22] and diagrams and references therein). This also sheds light on the
Landau critical velocity where the frequency of the sound waves in liquid He goes negative like for the Cherenkov
situation discussed above. An impurity which couples to the sound waves will create particle pairs (squeezing) which
will introduce a quantum friction force on the impurity.
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FIG. 2: (a) An atom is moving near metal surface with constant velocity. The atom can become excited by emitting a surface
plasmon with negative frequency and then spontaneously decay to the ground state by emitting a surface plasmon with positive
frequency. (b) Frequency of surface plasmons in the atom’s frame moving with velocity V as a function of the surface plasmon

wave vector k for V = 0 and V = 0.5c. Frequency of modes with k >
ωp

V

√

c2−V 2

2c2−V 2 is negative, where ωp is the electron plasma

frequency.
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