
Physics 200-05
Practice problems 4– Two system quantum mechanics

In the following Σ are the Pauli matrices for one particle and Ξ are the
Pauli matrices for the other particle. The same symbol I will be used for the
identity matrix of both.

1. Show that the matrix Σ2 acting on the eigenvectors |+1; 3〉 and |−1; 3〉
of Σ3 obey

Σ2|+ 1; 3〉 = i| − 1; 3〉 (1)

Σ2| − 1; 3〉 = −i|+ 1; 3〉 (2)

This propety of the matrices acting so as to change one state vector into
another is why they are often also called “Operators”. Ie, the Σ matrices
are often called the Σ opertors. In this context, the word Operator and the
word Matrix are synonymous.

(In the infinite dimensional case, it is sometimes more convenient to call
them operators than think of them as matrices. For example, if we look at
the way in which the P momentum matrix changes a state expressed in terms
of the X eigenvectors, |Ψ〉 =

∫
ψ(x)|x〉dx, then

P |Ψ〉 = −ih̄
∫ ∂ψ(x)

∂x
|x〉dx (3)

and the infinite dimensional P matrix acts like the derivative operator on
the coeficients of the state. )

Show that

Σ2 ⊗ Ξ2(|1; 3〉 ⊗ | − 1; 3〉) = | − 1; 3〉 ⊗ |+ 1; 3〉 (4)

and that

Σ2 ⊗ Ξ2(| − 1; 3〉 ⊗ |+ 1; 3〉) = |+ 1; 3〉 ⊗ | − 1; 3〉 (5)

Thus show that if

|ψ〉 =
1√
2

(|1; 3〉 ⊗ | − 1; 3〉 − | − 1; 3〉 ⊗ |+ 1; 3〉) (6)

then

Σ2 ⊗ Ξ2|ψ〉 = −|ψ〉 (7)
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Ie, since we showed in class that |ψ〉 is an eigenstate of Σ1 ⊗ Ξ1 and of
Σ3 ⊗ Ξ3, it is and eigenstate of all of the Σi ⊗ Ξi. One can similarly show
that if we define Σ̃ = ~β · Σ and Ξ̃ = ~β · ~Ξ then Σ̃ ⊗ Ξ̃|ψ〉 = −|ψ〉 This state
is called the “singlet” state of two spin-1/2 particles.

Σ2 =
(

0 −i
i 0

)
(8)

and

|1; 3〉 =
(

1
0

)
(9)

| − 1; 3〉 =
(

0
1

)
(10)

Thus

Σ2|1; 3〉 =
(

0 −i
i 0

)(
1
0

)
=
(

0
i

)
= i

(
0
1

)
= i| − 1; 3〉 (11)

Σ2| − 1; 3〉 =
(

0 −i
i 0

)(
0
1

)
=
(−i

0

)
= −i

(
1
0

)
= i|1; 3〉 (12)

Thus

Σ2 ⊗ Ξ2(|1; 3〉 ⊗ | − 1; 3〉) = (Σ2|1; 3〉)⊗ (Ξ2| − 1; 3〉) (13)

= (i| − 1; 3〉)⊗ (−i|1; 3〉) = | − 1; 3〉 ⊗ |1; 3〉 (14)

Σ2 ⊗ Ξ2(| − 1; 3〉 ⊗ |1; 3〉) = (Σ2| − 1; 3〉)⊗ (Ξ2|1; 3〉) (15)

= (−i|1; 3〉)⊗ (i| − 1; 3〉) = |1; 3〉 ⊗ | − 1; 3〉 (16)

Thus

Σ2 ⊗ Ξ2|ψ〉 =
1√
2

(Σ2 ⊗ Ξ2|1; 3〉 ⊗ | − 1; 3〉 − Σ2 ⊗ Ξ2| − 1; 3〉 ⊗ |1; 3〉) (17)

=
1√
2

(−| − 1; 3〉 ⊗ |1; 3〉+ |1; 3〉 ⊗ | − 1; 3〉) = −|ψ〉 (18)

2)By the rules of multiplication of direct product matrices,

〈ψ| ⊗ 〈φ||ψ̃〉 ⊗ |φ̃〉 = 〈ψ||ψ̃〉〈φ||φ̃〉 (19)
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Show that if either |φ〉 is orthogonal to |φ̃〉 or |ψ〉 is orthogonal to |ψ̃〉,
then the vectors |ψ〉 ⊗ |φ〉 and |ψ̃〉 ⊗ |φ̃〉 are orthogonal to each other.

〈ψ| ⊗ 〈φ||ψ̃〉 ⊗ |φ̃〉 = 〈ψ||ψ̃〉〈φ||φ̃〉 (20)

= 0 (21)

if either 〈ψ||ψ̃〉 = 0 or 〈φ||φ̃〉 = 0.But, 〈ψ| ⊗ 〈φ||ψ̃〉 ⊗ |φ̃〉 = 0 is just the
statement that |ψ〉 ⊗ |φ〉 and |ψ̃〉 ⊗ |φ̃〉 are orthogonal to each other. Ie, if
either of theiindividual vectors in a product state are orthogonal then the
product state is.

3)Show that

〈ψ|Σ3 ⊗ I|ψ〉 = 0 (22)

where |ψ〉 is as defined in question 1.
By extention all of the individual Σ and Ξ have zero expectation value.

Thus, there is no state for the individual particles which captures the prob-
abilities of this two particle entangled state.

Note that Σ3 ⊗ I is almost universally written as Σ3, not because Σ3 ⊗ I
equals Σ3 (it does not and could not since Σ3⊗ I is a 4x4 matrix while Σ3 is
a 2x2) but because physicists do not like excess symbols. Ie, it is understood
when talking about a two (or multi) particle system a single operator acts
only on the states of that one particle and the other particle states are left
alone.

〈ψ|Σ3 ⊗ I|ψ〉 =
1

2
(〈1; 3| ⊗ 〈−1; 3| − 〈1; 3| ⊗ 〈1; 3|) ((Σ3|1; 3〉 ⊗ | − 1; 3〉 − (Σ3| − 1; 3〉)⊗ |1; 3〉)(23)

=
1

2
(〈1; 3|Σ3|1; 3〉〈−1; 3|| − 1; 3〉+ 〈−1; 3|Σ3| − 1; 3〉〈1; 3||1; 3〉)(24)

where I have used the answer to problem 2 in getting to the last line. But
〈1; 3|Σ3|1; 3〉 = 1 and〈−1; 3|Σ3| − 1; 3〉 = −1 so the two terms cancel.

4) Show that |Ψ〉 = 1√
2

(|1; 3〉 ⊗ |1, 3〉+ | − 1; 3〉 ⊗ | − 1, 3〉) is an eigen-
state of Σ1 ⊗ Ξ1 and Σ3 ⊗ Ξ3 with eigenvalue +1, and thus would be a
state for which the Bell’s inequality expression would give a value of +2

√
2,

which would also violate the classical inequality. Show that this state is an
eigenvector for Σ2 ⊗ Σ2 with eigenvalue −1.
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Σ3 ⊗ Ξ3Ψ =
1√
2

((Σ3|1; 3〉)⊗ (Ξ3|1; 3〉) + (Σ3| − 1; 3〉)⊗ (Ξ3| − 1; 3〉) (25)

=
1√
2

(((1)|1; 3〉)⊗ ((1)|1; 3〉) + ((−1)| − 1; 3〉)⊗ ((−1)| − 1; 3〉) = |Ψ〉 (26)

Similarly using

Σ1|1; 3〉 = | − 1; 3〉 (27)

Σ1| − 1; 3〉 = |1; 3〉 (28)

and similarly for Ξ1, we have

Σ1 ⊗ Ξ1Ψ =
1√
2

((Σ1|1; 3〉)⊗ (Ξ1|1; 3〉) + (Σ1| − 1; 3〉)⊗ (Ξ1| − 1; 3〉) 4) (29)

=
1√
2

((| − 1; 3〉)⊗ (| − 1; 3〉) + (|1; 3〉)⊗ (|1; 3〉) = |Ψ〉 (30)

Thus this state is a +1 eigenvalue eigenstate of both the operators Σ3 ⊗ Ξ3

and Σ1 ⊗ Ξ1 .
But

Σ2 ⊗ Ξ2Ψ =
1√
2

((Σ2|1; 3〉)⊗ (Ξ2|1; 3〉) + (Σ2| − 1; 3〉)⊗ (Ξ2| − 1; 3〉) 4) (31)

=
1√
2

(((i)| − 1; 3〉)⊗ ((i)| − 1; 3〉) + ((−i)|1; 3〉)⊗ ((−i)|1; 3〉) = −|Ψ〉 (32)

Ie, it is an -1 eigenvalue eigenstate of Σ2 ⊗ Ξ2

For Bell’s thm, we took A = Σ1, B = Σ3, C = 1√
2
(Ξ1 + Ξ3) and D =

1√
2
(Ξ1 − Ξ3) Thus

〈Ψ|A⊗ C|Ψ〉+ 〈Ψ|A⊗D|Ψ〉+ 〈Ψ|B ⊗ C|Ψ〉 − 〈Ψ|B ⊗D|Ψ〉 = 〈Ψ| (A⊗ (C +D) +B ⊗ (C −D)) |Ψ〉(33)

=
√

2Ψ (Σ1 ⊗ Ξ1 + Σ3 ⊗ Ξ3) |Ψ〉 =
√

2〈Ψ| (+1|Ψ〉+ (+1)|Ψ〉) = 2
√

2(34)

which is greater than 2, the Bell classical limit at the positive end.
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