Physics 200-05

Practice 2
1)From the definitions

$$
\begin{align*}
\cosh (\theta) & =\frac{e^{\theta}+e^{-\theta}}{2} \tag{1}\\
\sinh (\theta) & =\frac{e^{\theta}-e^{-\theta}}{2} \tag{2}
\end{align*}
$$

show that $\cosh (\theta)^{2}-\sinh (\theta)^{2}=1$ and find the derivatives of both $\cosh (\theta)$ and $\sinh (\theta)$.

If $\tanh (\theta)=\frac{\sinh (\theta)}{\cosh (\theta)}=\frac{v}{c}$, find $\cosh (\theta)$ and $\sinh (\theta)$.
The first part is just a bit of algebra. The second (derivatives) use that

$$
\begin{align*}
\frac{d e^{\theta}}{d \theta} & =e^{\theta} \tag{3}\\
\frac{d e^{-\theta}}{d \theta} & =-e^{\theta} \tag{4}
\end{align*}
$$

to give

$$
\begin{align*}
& \frac{d \cosh (\theta)}{d \theta}=\sinh (\theta) \tag{5}\\
& \frac{d \sinh (\theta)}{d \theta}=\cosh (\theta) \tag{6}
\end{align*}
$$

2)Find the expression for the Lorentz transformation to first order in $\frac{v}{c}$.

$$
\begin{array}{r}
\tilde{x}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}(x-v t) \approx x-v t \\
\tilde{t}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}\left(t-\frac{v}{c^{2}} x \approx t-\frac{v}{c^{2}} x\right. \tag{8}
\end{array}
$$

3. What would the Lorentz transformation with velocity v in a direction at 30 degrees from the x axis in the $\mathrm{x}-\mathrm{y}$ plane? In the perpendicular direction to the motion there is no change. Thus

$$
\begin{array}{r}
\tilde{z}=z \\
\cos (30) \tilde{y}-\sin (30) \tilde{x}=\cos (30) y-\sin (30) x \tag{10}
\end{array}
$$

In the direction along the direction of motion (which would correspond to the direction $\cos (30) x+\sin (30) y$) we have te uaual transformation

$$
\begin{array}{r}
\cos (30) \tilde{x}+\sin (30) \tilde{y}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}(\cos (30) x+\sin (30) y-v t) \\
\tilde{t}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}\left(t-\frac{v}{c^{2}}(\cos (30) x+\sin (30) y)\right) \tag{12}
\end{array}
$$

In general, we can write the transformation as

$$
\begin{array}{r}
\vec{v} \cdot \overrightarrow{\tilde{x}}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}\left(\vec{v} \cdot \vec{x}-v^{2} t\right) \\
\tilde{t}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}\left(t-\frac{\vec{v} \cdot \vec{x}}{c^{2}}\right) \\
\vec{v} \times \overrightarrow{\tilde{x}}=\vec{v} \times \vec{x} \tag{15}
\end{array}
$$

Ie, the components which are perpendicular to \vec{v} are unchanged, while those parallel are transformed.
4. What would the expression for distance be in three dimensions if the z directions are measured in feet, and x, y in meters? What would the expression for rotation by angle θ about the y axis be.

If we write g as the transformation from feet to meters- ie $.305 \mathrm{~m} / \mathrm{f}$, then we would have

$$
\begin{equation*}
(\text { distanceinmeters })^{2}=x^{2}+y^{2}+g^{2} z^{2} \tag{16}
\end{equation*}
$$

Ie, we get a conversion factor in the distance formula which converts the z coordinates to the same units as the x and y . We would get that same conversion factor occuring in rotations. For example rotating around the y axis, by angle θ we would get

$$
\begin{gather*}
\tilde{x}=\cos (\theta) x+\sin (\theta) g z \tag{17}\\
\tilde{z}=\cos (\theta) z-\frac{1}{g} \sin (\theta) x \tag{18}
\end{gather*}
$$

Ie, we would get extra factors of g or $\frac{1}{g}$ occuring in all of the equations. Note the similarity to the factors of c which occur in the equations of Lorentz transformations. If we measured all times in the same units as space (eg meters), then all of the factors of c would vanish from the Lorentz formulas and they would look much simpler.

