
Physics 200-05
Practice 1

1). Show explicitly that if

x̃ = cos(θ)x+ sin(θ)y (1)

ỹ = cos(θ)y − sin(θ)x (2)

then the distance from the origin in the x̃, ỹ system is the same as in the x, y
system.

˜dist
2

= x̃x2 + ỹ2 (3)

= (x cos(θ) + y sin(θ))2 + (y cos(θ)− x sin(θ))2 (4)

= x2(cos(θ)2 + sin(θ)2) + y2(sin(θ)2 + cos(θ)2) (5)

+ 2xy(cos(θ)sin(θ)− sin(θ)cos(θ)) (6)

= x2 + y2 = dist2 (7)

2) [Hard] Show that if x̃ = X(x, y), ỹ = Y (x, y), then the requirement that
the distance between any two nearby points x1, y1 and x2, y2 be the same as
between x̃1, ỹ1 and x̃2, ỹ2, for all x1, y1 and nearby x2, y2 is that
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and that the second derivatives of X and Y are all zero. (Expand the expression
for the distance in the x̃, ỹ coordinates in a taylor series in terms of the the x2−x1

and y2 − y1).
This means that the only transformations must be of the form

X(x, y) = cos(θ)x+ sin(θ)y + cx (10)

Y (x, y) = cos(θ)y − sin(θ)x+ cy (11)

where the cx and cy are constants and

cos(θ) =
∂X

∂x
=
∂Y

∂y
. (12)

Ie, in two dimensions, the only transformations of the coordinates which
keeps all distances the same are rotations and translations.

˜dist
2

= (x̃2 − x̃1)2 + (ỹ2 − ỹ1)2 (13)

((X(x2, y2)−X(x1, y1))2 + (Y (x2, y2)− Y (x1, y1))2 (14)

= (x2 − x1)2 + (y2 − y1)2 (15)
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where the last equal sign comes from what we want. Ie, we want both distances
to be the same for all values of x1, y1, x2, y2. Let me make typing easier and
write x, y for x1, y1

Take the second derivative of both sides of this expression with respect to
x2, y2 evaluated at x2 = x and y2 = y. (The first derivative is zero) First taking
the second derivative with respect to x2 we get

2
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Where X is shorthand for X(x, y) and similarly for Y .
Taking the second derivative with respect to y2 and evaluating at y2 = y,

we get

2
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Finally taking the mixed derivative, first wrt to x2 and then with respect to
y2 we get
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∂X
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= 0 (18)

From the first equation, we know that ∂X
∂x and ∂Y

∂x are both less than 1, and
their squares sum up to 1. We can thus take

∂X

∂x
= cos(θ) (19)

∂Y

∂x
= −sin(θ) (20)

for some value of θ. θ may well depend on x, y. Similarly

∂X

∂y
= sin(φ) (21)

∂Y

∂x
= cos(φ) (22)

For some value of φ from the second equation. Then the third equation becomes
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(23)

= cos(θ) sin(φ)− sin(θ)cos(φ) = sin(θ − φ) = 0 (24)

Thus φ = θ.
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We now have to ask if θ can depend on x, y. We will use the two equations.
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Ie, for both Y and X the order in which one takes the mixed derivatives does
not matter.

But writing the first derivatives in terms of θ derived above, and using the
chain rule for the derivatives of cos and sin, we get

∂

∂y
cos(θ) =

∂

∂x
sin(θ) (27)

∂

∂y
(−sin(θ) =

∂

∂x
cos(θ) (28)

or

−sin(θ)
∂θ

∂y
= cos(θ)

∂θ

∂x
(29)

−cos(θ)∂θ
∂y

= −sin(θ)
∂θ

∂x
(30)

Multiplying the first by sin(θ) and the second by cos(θ) and adding we get

−(sin(θ)2 + cos(θ)2)
∂θ

∂y
= 0 (31)

which says that θ must be independent of y. Thus θ must also be independent
of x and θ must be constant.

Thus all second and higher deriatives of X and Y must be zero.
X and Y must be linear functions of x and y and knowing what the first

derivatives are, we get

X(x, y) = cos(θ)x+ sin(θ)y + cX (32)

Y (x, y) = −sin(θ)x+ cos(θ)y + cY (33)

where cX and cY are integration constants.
3) (Abberation) Rain is falling vertically and hits the ground with speed c.

A bicyclist is travelling through the rain with velocity c/2. At what angle (from
the vertical) does the cyclist feel the rain as hitting him?

In the frame of the bike, the rain comes down with velocity v and moves
toward the bicyclist with velocity v/2. The angle θ is given by

tan(θ) =
v/2

v
=

1

2
(34)
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from which θ = .463 = 26.6 degrees.

4)Assume that the aether is completely dragged by light. Thus the velocity
of light in water flowing with the light is c

n + v while that for light in water
flowing against the light is c

n − v. What would be the difference in the time (to
lowest order in v) it takes light to traverse two meters of flowing water, if the
water is flowing at 10 m/sec. (recall that the velocity of light, c = 3 · 108m/sec
and the index of refraction of water is 1.3. If the frequency of light used is
2 · 1015Hz what is this difference in time as a fraction of the period of the light.

Fresnels theory says that the drag is not v, but rather is (to lowest order in v)
v(1− 1

n2 ). How much of a difference would this make in the above exeriment?(See
text book).

The time on the trip with the flowing water would be L
c/n−v where L is the

length of the path. The time against the flowing water would be L
c/n+v . Thus

the difference in time would be

L

c/n− v −
L

c/n+ v
=

2Lv

(c/n)2 − v2
(35)

keeping only to lowest order in v (ie, expanding in a taylor series in v and keeping

only the first term) we get that the difference in time is 2Ln2v
c2 . Plugging in the

values for L, n, c and v we get .75 10−15 sec. Since the number of cyles per
second of the light is 2 1015 Hz, this corresponds to 1.5 cycles.

In the case of the partial drag, the drag velocity instead of v is v(1−1
n2)=.41v Thus

the time difference is

2Lv(1− 1
n2 )

(c/n)2 − v2
(36)

which gives a number of cycles of .62 for the time difference.

5


