Physics 200-05

Practice 1
1). Show explicitly that if

$$
\begin{align*}
& \tilde{x}=\cos (\theta) x+\sin (\theta) y \tag{1}\\
& \tilde{y}=\cos (\theta) y-\sin (\theta) x \tag{2}
\end{align*}
$$

then the distance from the origin in the \tilde{x}, \tilde{y} system is the same as in the x, y system.

$$
\begin{array}{r}
d \tilde{i} t^{2}=\tilde{x} x^{2}+\tilde{y}^{2} \\
=(x \cos (\theta)+y \sin (\theta))^{2}+(y \cos (\theta)-x \sin (\theta))^{2} \\
=x^{2}\left(\cos (\theta)^{2}+\sin (\theta)^{2}\right)+y^{2}\left(\sin (\theta)^{2}+\cos (\theta)^{2}\right) \\
+2 x y(\cos (\theta) \sin (\theta)-\sin (\theta) \cos (\theta)) \\
=x^{2}+y^{2}=d i s t^{2} \tag{7}
\end{array}
$$

2) [Hard] Show that if $\tilde{x}=X(x, y), \tilde{y}=Y(x, y)$, then the requirement that the distance between any two nearby points x_{1}, y_{1} and x_{2}, y_{2} be the same as between $\tilde{x}_{1}, \tilde{y}_{1}$ and $\tilde{x}_{2}, \tilde{y}_{2}$, for all x_{1}, y_{1} and nearby x_{2}, y_{2} is that

$$
\begin{array}{r}
\left(\frac{\partial X}{\partial x}\right)^{2}+\left(\frac{\partial Y}{\partial x}\right)^{2}=\left(\frac{\partial X}{\partial y}\right)^{2}+\left(\frac{\partial Y}{\partial y}\right)^{2}=1 \\
\left(\frac{\partial X}{\partial x}\right)\left(\frac{\partial X}{\partial y}\right)=-\left(\frac{\partial Y}{\partial y}\right)\left(\frac{\partial Y}{\partial x}\right) \tag{9}
\end{array}
$$

and that the second derivatives of X and Y are all zero. (Expand the expression for the distance in the \tilde{x}, \tilde{y} coordinates in a taylor series in terms of the the $x_{2}-x_{1}$ and $y_{2}-y_{1}$).

This means that the only transformations must be of the form

$$
\begin{align*}
& X(x, y)=\cos (\theta) x+\sin (\theta) y+c_{x} \tag{10}\\
& Y(x, y)=\cos (\theta) y-\sin (\theta) x+c_{y} \tag{11}
\end{align*}
$$

where the c_{x} and c_{y} are constants and

$$
\begin{equation*}
\cos (\theta)=\frac{\partial X}{\partial x}=\frac{\partial Y}{\partial y} \tag{12}
\end{equation*}
$$

Ie, in two dimensions, the only transformations of the coordinates which keeps all distances the same are rotations and translations.

$$
\begin{array}{r}
\text { dist }^{2}=\left(\tilde{x}_{2}-\tilde{x}_{1}\right)^{2}+\left(\tilde{y}_{2}-\tilde{y}_{1}\right)^{2} \\
\left(\left(X\left(x_{2}, y_{2}\right)-X\left(x_{1}, y_{1}\right)\right)^{2}+\left(Y\left(x_{2}, y_{2}\right)-Y\left(x_{1}, y_{1}\right)\right)^{2}\right. \\
=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \tag{15}
\end{array}
$$

where the last equal sign comes from what we want. Ie, we want both distances to be the same for all values of $x_{1}, y_{1}, x_{2}, y_{2}$. Let me make typing easier and write x, y for x_{1}, y_{1}

Take the second derivative of both sides of this expression with respect to x_{2}, y_{2} evaluated at $x_{2}=x$ and $y_{2}=y$. (The first derivative is zero) First taking the second derivative with respect to x_{2} we get

$$
\begin{equation*}
2\left(\frac{\partial X}{\partial x}\right)^{2}+\left(\frac{\partial Y}{\partial x}\right)^{2}=2 \tag{16}
\end{equation*}
$$

Where X is shorthand for $X(x, y)$ and similarly for Y.
Taking the second derivative with respect to $y 2$ and evaluating at $y 2=y$, we get

$$
\begin{equation*}
2\left(\frac{\partial X}{\partial y}\right)^{2}+\left(\frac{\partial Y}{\partial y}\right)^{2}=2 \tag{17}
\end{equation*}
$$

Finally taking the mixed derivative, first wrt to x_{2} and then with respect to y_{2} we get

$$
\begin{equation*}
2\left(\frac{\partial X}{\partial x} \frac{\partial X}{\partial y}\right)+2\left(\frac{\partial Y}{\partial x} \frac{\partial Y}{\partial y}\right)=0 \tag{18}
\end{equation*}
$$

From the first equation, we know that $\frac{\partial X}{\partial x}$ and $\frac{\partial Y}{\partial x}$ are both less than 1 , and their squares sum up to 1 . We can thus take

$$
\begin{array}{r}
\frac{\partial X}{\partial x}=\cos (\theta) \\
\frac{\partial Y}{\partial x}=-\sin (\theta) \tag{20}
\end{array}
$$

for some value of θ. θ may well depend on x, y. Similarly

$$
\begin{align*}
& \frac{\partial X}{\partial y}=\sin (\phi) \tag{21}\\
& \frac{\partial Y}{\partial x}=\cos (\phi) \tag{22}
\end{align*}
$$

For some value of ϕ from the second equation. Then the third equation becomes

$$
\begin{array}{r}
\left(\frac{\partial X}{\partial x} \frac{\partial X}{\partial y}\right)+2\left(\frac{\partial Y}{\partial x} \frac{\partial Y}{\partial y}\right) \\
=\cos (\theta) \sin (\phi)-\sin (\theta) \cos (\phi)=\sin (\theta-\phi)=0 \tag{24}
\end{array}
$$

Thus $\phi=\theta$.

We now have to ask if θ can depend on x, y. We will use the two equations.

$$
\begin{align*}
& \frac{\partial}{\partial y} \frac{\partial X}{\partial x}=\frac{\partial}{\partial x} \frac{\partial X}{\partial y} \tag{25}\\
& \frac{\partial}{\partial y} \frac{\partial Y}{\partial x}=\frac{\partial}{\partial x} \frac{\partial Y}{\partial y} \tag{26}
\end{align*}
$$

Ie, for both Y and X the order in which one takes the mixed derivatives does not matter.

But writing the first derivatives in terms of θ derived above, and using the chain rule for the derivatives of \cos and \sin, we get

$$
\begin{align*}
\frac{\partial}{\partial y} \cos (\theta) & =\frac{\partial}{\partial x} \sin (\theta) \tag{27}\\
\frac{\partial}{\partial y}(-\sin (\theta) & =\frac{\partial}{\partial x} \cos (\theta) \tag{28}
\end{align*}
$$

or

$$
\begin{array}{r}
-\sin (\theta) \frac{\partial \theta}{\partial y}=\cos (\theta) \frac{\partial \theta}{\partial x} \\
-\cos (\theta) \frac{\partial \theta}{\partial y}=-\sin (\theta) \frac{\partial \theta}{\partial x} \tag{30}
\end{array}
$$

Multiplying the first by $\sin (\theta)$ and the second by $\cos (\theta)$ and adding we get

$$
\begin{equation*}
-\left(\sin (\theta)^{2}+\cos (\theta)^{2}\right) \frac{\partial \theta}{\partial y}=0 \tag{31}
\end{equation*}
$$

which says that θ must be independent of y. Thus θ must also be independent of x and θ must be constant.

Thus all second and higher deriatives of X and Y must be zero.
X and Y must be linear functions of x and y and knowing what the first derivatives are, we get

$$
\begin{array}{r}
X(x, y)=\cos (\theta) x+\sin (\theta) y+c_{X} \\
Y(x, y)=-\sin (\theta) x+\cos (\theta) y+c_{Y} \tag{33}
\end{array}
$$

where c_{X} and c_{Y} are integration constants.
3) (Abberation) Rain is falling vertically and hits the ground with speed c. A bicyclist is travelling through the rain with velocity $c / 2$. At what angle (from the vertical) does the cyclist feel the rain as hitting him?

In the frame of the bike, the rain comes down with velocity v and moves toward the bicyclist with velocity $\mathrm{v} / 2$. The angle θ is given by

$$
\begin{equation*}
\tan (\theta)=\frac{v / 2}{v}=\frac{1}{2} \tag{34}
\end{equation*}
$$

from which $\theta=.463=26.6$ degrees.
4)Assume that the aether is completely dragged by light. Thus the velocity of light in water flowing with the light is $\frac{c}{n}+v$ while that for light in water flowing against the light is $\frac{c}{n}-v$. What would be the difference in the time (to lowest order in v) it takes light to traverse two meters of flowing water, if the water is flowing at $10 \mathrm{~m} / \mathrm{sec}$. (recall that the velocity of light, $c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec}$ and the index of refraction of water is 1.3 . If the frequency of light used is $2 \cdot 10^{15} \mathrm{~Hz}$ what is this difference in time as a fraction of the period of the light.

Fresnels theory says that the drag is not v, but rather is (to lowest order in v) $v\left(1-\frac{1}{n^{2}}\right)$. How much of a difference would this make in the above exeriment?(See text book).

The time on the trip with the flowing water would be $\frac{L}{c / n-v}$ where L is the length of the path. The time against the flowing water would be $\frac{L}{c / n+v}$. Thus the difference in time would be

$$
\begin{equation*}
\frac{L}{c / n-v}-\frac{L}{c / n+v}=\frac{2 L v}{(c / n)^{2}-v^{2}} \tag{35}
\end{equation*}
$$

keeping only to lowest order in v (ie, expanding in a taylor series in v and keeping only the first term) we get that the difference in time is $\frac{2 L n^{2} v}{c^{2}}$. Plugging in the values for L, n, c and v we get $.7510^{-15}$ sec. Since the number of cyles per second of the light is $210^{15} \mathrm{~Hz}$, this corresponds to 1.5 cycles.

In the case of the partial drag, the drag velocity instead of v is $\frac{v(1-1}{\left.n^{2}\right)=.41 v}$ Thus the time difference is

$$
\begin{equation*}
\frac{2 L v\left(1-\frac{1}{n^{2}}\right)}{(c / n)^{2}-v^{2}} \tag{36}
\end{equation*}
$$

which gives a number of cycles of .62 for the time difference.

