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Periodic Table

One of the successes of the old quantum theory was an explanation of the
periodic table.

Bohr, in his original deriviation of the energy levels of the H atom used
just the circular orbits in deriving the energy levels
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but it was clear that the classical system had more degrees of freedom than
that. In particular the classical system could have a variety of angular mo-
menta for each energy. The electron could circle the central atom in circular
and in elliptic orbits. (Just as with the planets, the electron would circle the
central nucleus with the nucleus at one of the foci of the ellipse.) Sommer-
feld thus postulated that there was a separate quantization condition for each
degree of freedom, which he took to be the radial motion and the angular
motion.

Thus we can write the three conditions as

n1h =
∫
prṙdt

n2h =
∫
pθrθ̇dt

n3h =
∫
pφr sin(θ)φ̇dt (2)

where pr, pθ, and pφ are the components of the ordinary momentum m~v in the
directions r, θ, φ. The terms ṙ, rθ̇, and r sin(θ)φ̇ the velocity of the particle
in those directions.( The dot over an expression means the time derivative of
that expression).

Now,

∫
pθrθ̇ + pφr sin(θ)φ̇dt =

∫
mv2

θ +mv2
φdt. (3)

But the term on the right hand side is invariant under a rotation of the whole
system. Thus, in order to find the energy, we can always rotate the whole

system, so that the orbit lies entirely in the x-y plane, and such that ˙̃θ is
zero.
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Ie, we can solve the equations for the orbit in the x-y plane, and then
afterwards rotate back into the frame in which the orbit is inclined to the
x-y plane.

For an orbit in the x-y plane only we then have the single quantization
condition

(n2 + n3)h =
∫
pφr

˙̃φdt (4)

where φ̃ is the angle φ in the new rotated coordinates.
We can thus assume that we are looking at the orbit lying in the x-y plane.

We can now write two quantization conditions– one refering to motion in the
angular direction, and one in the radial direction.

n1h =
∫
prṙdt

(n2 + n3)h =
∫
pφ̃r

˙̃φdt (5)

In this case n1 can go from 0 (if the orbit is circular, and there is no radial
motion). However n2+n3 can only go from 1, since it makes no sense to think
about an orbit with zero angular momentum– it would go right through the
central nucleus.

There exists a so called Virial theorem for any power law central potential.
The simplest way to see this is to write Newton’s law second law as

md2 ~r

dt2
= −~∇V (r) (6)

where ~∇ is the gradient of the central force potential which depends only on
the distance r from the center. Take the dot product of both sides with ~r
and average over an orbit, remembering that

~∇V (r) =
dV (r)

dr

~r

r
(7)

(ie the force only has a component in the r direction) Thus we have

∫
m
d2~r

dt2
· ~rdt = −

∫ dV (r)

dr

~r

r
· ~rdt (8)
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Now,

d2~r

dt2
· ~r =

d

dt
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− d~r
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· d~r
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(9)

and thus the left hand side becomes

d~r

dt
· ~r|T0 −

∫ T

0
mv2dt = −

∫
r
dV (r)

dr
dt (10)

If we take T to be one period, then the first term is zero since in the periodic
orbit all the terms repeat themselves after time T . Thus the average value of
twice the kinetic energy equals the average value of r dV

dr
. If V is a power law

potential, V = Arα then r dV
dr

= αV (r). Thus for any power law potential
the average kinetic energy is α

2
times the average potential energy. For the

charge or the gravitational case, α = −1, so the average potential energy is
minus twice the kinetic energy. Ie, the total energy (potential plus kinetic
energy) is the average of minus the kinetic energy.

The total energy is

E = KE + PE (11)

so for the Coulomb problem,

E = KE + PE = KE − 2KE = −KE = −1

2
(mṙ2 +mr2θ̇2) = −1

2
(prṙ + pθθ̇)(12)

Integrating over one period, we have

ET =
1

2
(n1 + n2 + n3)h (13)

where T is one period, since the terms on the right are just the sum of the
two actions.

We now need to figure out what T is in terms of the properties of the
orbit. It turns out that T depends only on the energyE.

To find T takes a bit more work. The angular momentum r2 dφ̃
dt

is just
twice the rate of change of the area of the orbit times the mass. (see fig 1).
(The area of the small triangle is 1

2
base x height = 1

2
r dθ
dt
δt r This means that

the area of the ellipse , which is πab
4

where a is the length of the major axis
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and b is the minor axis, is twice the integral of the angular momentum over
the period. However the equation of motion of the particle so that

d

dt
(r2dφ̃

dt
= 0 (14)

Since the angular momentum is conserved, it is the same over time, so we
have

pθT = mπ
ab

2
(15)

Figure 1: The definition of various quantities for an ellipse. The nucleus of
the atom is assumed to be at the left focus of the ellipse.

Finally, we can use the fact that the nucleus is at the focus of the ellipse,
and we can use that, at the closest approach and furthest approach to the
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center, the radial velocity is zero. Since the angular momentum is mr2θ̇ = pθ,
we have that θ̇ = pθ

r2 . At the closest approach to the sun, we have

E =
1

2
(pθθ̇ −

Ze2

4πε0r

=
1

2

p2
θ

mr2
− Ze2

4πε0r
(16)

Solving this equation for the two values of r (closest and most distant ap-
proach), r1 and r2, and adding them to get the semi-major axis, we have

a =
Ze2

4πε0E
(17)

or

E =
Ze2

4πε0a
(18)

Ie, the total energy depends only on a the major axis of the ellipse.
Finally using the fact that for an ellipse, the length of the string from

one focus to the ellipse and then to the other focus is always constant, and
is thus equal to a, we find that the difference between the two solutions for
r, which is just the distance between the two foci, is equal to

√
a2 + b2.

r1− r2 =

√√√√
(
Ze2

4ε0E

)2

+ 4
p2
θ

2m2E
(19)

from which we immediately read off that

b =
pθ

m
√
E/2

(20)

Thus

T = π
ab

pθ
= π

Ze2

4πε0E

1√
E/2

(21)

and

ET =
Ze2

4ε0
√
E/2

= (n1 + n2 + n3)h (22)
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Thus the energy depends only on n = n1 +n2 +n3 and this is the n in Bohr’s
formula. Usually n2 + n3 is called l + 1 so that l goes from 0 to n-1.

Since the major axis is the same for a given n, for large n but low l, the
radial quantum number n1 is large. which means that the orbit has a large
change in r during the orbit. Ie, the orbit is elliptical and the electron spends
more time near the central charge. Because the central charge is screened
by the other electrons when the electron under consideration is far away, the
energy of the high l states for a given n is higher than for low l. (the greater
positive charge seen by the electron which comes nearer the nucleus binds it
more tightly making the energy lower.)

It was found experimentally by putting the atom into a magnetic field
(Zeeman effect) that each of the states with quanum number l had 2(2l+1)
substates. This could be understood if we assume that n3 has values from 0
to n2 − 1 = l only, and that for each value except n3 = 0, the electron could
orbit in two directions– clockwise or counterclockwise as seen from above.
Ie, for each non-zero value there were 2 states and for zero only 1. However,
there seemed to be two extra states for each of the above values. of n1, n2

and m = ±n3

This “explains” the periodic table. Using the Pauli exclusion principle,
one would expect to fill the lower n befor higher, and the lower l before the
higher. Thus, first n=1 l=0, then n=2 l=0, then n=2 l=1, then n=3 l=0,
n=3 l=1. However, because of their plunging closer to the nucleus the n=3
l=2 have a higher energy than the n=4 l=0 and n=4 l=1. Thus the order
essentially is

n l
1 0
2 0
2 1
3 0
3 1
4 0
4 1
3 2 (23)

5 0
4 2
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5 1
6 0
4 3
5 2
6 1
7 1
5 3
6 2
7 2

Actually one of the l=2 electrons sneaks in befor the l=3 shell fills up for the
higher n states.

Suddenly one could see reason in the periodic table– reasons why various
of the elements had such similar chemical properties. (eg, C and Si are very
similar, and this is because they occur at the same filling of an l=2 shell,
only in one case with n=2 and the other with n=3.)

In the periodic table accompanying this, the small numbers under the
element name refer to the principle quantum number (the first number) the
l quantum number (with s meaning l=0, p meaning l=1, d meaning l=2
and f meaning l=3. These have historical significance s=sharp, p=principle,
d=diffuse)
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