
Physics 200-05
Midterm Exam

Oct 24 2005
Time: 1:00PM to 1:50PM

This exam consists of five (5) questions. All problems are worth the same
number of marks. [4] marks each.

Note:You can use
c = 3 · 108m/sec

1. Given that the Matricees A and B are given by

A =

(
1 0
0 −1

)
(1)

B =

(
0 1
1 0

)
(2)

Calculate the matrix

(AB −BA)T (3)

[2]

AB =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
(4)

BA =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
(5)

AB −BA = 2

(
0 1
−1 0

)
(6)

(AB −BA)T =

(
0 −2
2 0

)
(7)

b) Consider the displacement 4-vector

p̄ =




∆t
∆x
∆y
∆z




Argue that if this represents a null (lightlike) displacement, then a Lorentz trans-
formation takes this null displacement into another null displacement. Show
that if the Lorentz transformation is in the x direction and the null displace-
ment is in the x direction (ie, ∆y = ∆z = 0) that this null displacement vector
is taken into a multiple of itself.
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Since a Lorentz transformation leaves the 4-distance the same after a trans-
formation, if the 4-distance is 0 before the transformation it is 0 afterwards as
well. [1]

For a null displacement in the x direction we have

∆x2 −∆t2 = 0 (8)

of ∆x = ±∆t, Thus the displacement vector is




∆t
∆x
∆y
∆z


 = ∆t




1
±1
0
0


 (9)

Under a Lorentz transformation in the x direction, ∆y and ∆z do not change
so they remain 0. ∆t and ∆x do change but since the displacement is still null,
we still have ∆x̃ = ±∆t̃, with the sign of the ± the same as before. Thus the
new transformed displacement is

∆t̃




1
±1
0
0


 =

∆t̃

∆t
p̄ (10)

[1]

2) Far in the future, a runner in the 120 kilometer dash disputes his record
breaking time with the official time-keeper. He says that according to his own
watch, which he carried with him during the race, his time for the race was
only 80% of the official time-keeper’s time. What was the official time for his
running of the race? (Assume that all clocks were accurate clocks and the
runner is assumed to have run the race at a constant speed throughout.)(Yes,
the answer is supposed to be absurd).

Since the runner must be running so fast that his time is dilated to only .8
of its original[1], we must have that

√
1− v2 = .8 [1] (11)

or
v2 = .36→ v = .6 [1] (12)

Thus he must have been running at .6c Since the track was 120km long, the
official time must have been

120km

.6 · 3 105km/s
= .666 · 10−3sec (13)

[1]
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3) Consider two observers on the surface of the earth, at opposite sides of
the earth at the equator. They both see a flash of light on the (rising/setting)
moon. What is the difference in time that they will ascribe to when the flash
occured on the moon? The earth’s diameter is 6000 km, it rotates once every
24 hours, and the distance from the earth to the moon is 400,000 km.

The two observers on the opposite sides of the earth both see the moon.
The only time is when it is moonrise for one and moonset for the other, since
otherwise teh earth would get in the way of both seeing it.

It is of course the earth’s radius that is 6000 km., not its diameter.
In the solutions below, I use this, but if you use my wrong assumption

about the earth above, then all velocities are half and the time synchronisation
difference is also half of what it is.

The velocity of the observers is

v = 2π
6000km

24 · 60 · 60 sec
≈ .42km/s (14)

Thus, v
c≈.14·10−5 . [1]

The distance to the moon is 400000km, and the time synchronization from
teh static earth for each is

t̃ =
1√

1− (.14 · 10−5)2
(t± v

c2
x) (15)

[2] where the sign depends on whether the observer is moving toward or away
from the moon. The prefactor is irrelevant (it makes a change of only 1 part in
1011 so the time difference is

2
v

c2
x ≈ .28 · 10−5

3 · 105km
400000km ≈ .38 · 10−5sec (16)

[1]

4) Peter Spacerider has heard about Relativity and heard that from the
point of view of a rapidly travelling observer, his own spaceship is really short.
He passes a spaceship identical to his own travelling in the opposite directioni
at almost the velocity of light. Just as the nose of his spaceship is at the tail
of the other spaceship he presses the button in the nose to fire the laser canon
in the tail of his own spaceship at the other spaceship. His collegue Johnny
says ”You are an idiot. It is the other spaceship that is really short since it is
travelling with respect to us. Your shot has missed.” Who is right? Why? What
is wrong with the other’s argument. (Note, you can assume that the distance
between the spaceships passing each other is much less than the length of the
spaceships.)

Assuming that the signal from the button to the canon goes at the speed of
light, the shot will hit the other spaceship. In Peter’s analysis, the signal from
the button to the cannon travels at c, while the canon travels upwards to meet
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Figure 1: For Problem 4. The two views of the spaceships passing each other.
Peter is in the nose of the right spaceship where he presses the button to fire
the laser canon in the tail of his spaceship.

the signal. Thus the canon will fire before the tail of the of Peter’s spaceship
has passed the tail of the otehr ship.

From Johnny’s point of view, the signal will again tranvel back to the cannon
at the speed of light, while the tail of the spaceship races with that signal at
just slightly less than the speed of light ( about .9c if the contraction of the
figures is to be believed). Thus the other spaceships tail will be just about at
the cannon when it fires, into the side of the spaceship.

IF the signal tranvels more slowly than c (and in particular more slowly
than about .9c, ) the tail of the other spaceship will pass the cannon before the
signal gets to the cannon and the shot will miss, but not in the way that Johnny
expected.

[Marking– The speed of the signal is a crucial feature here. If they just
assume that the speed is c that is OK. If they realise that this is a crucial
unstated feature of this problem, give a bonus mark of [1]. ]

5) A Helium nucleus at rest with rest-mass energy of 4GeV absorbs a gamma
ray of energy 1GeV leaving a single nucleus. What is the rest-mass of the
resulting nucleus, and what is its velocity?

The easiest way is to use conservation of energy and momentum. FOr a
photon the momentum equals the energy. Thus, before the collision, the total
energy is 4GeV+1GeV= 5GeV. [1]The momentum is 0GeV+1GeV=1GeV [1]
in the direction of the photon. Thus the final nucleus must have energy 5GeV
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and momentum 1GeV. Its rest mass is thus
√

52 − 12GeV = 4.9GeV . [1] Its
velocity is v = p

E = 1
5 or 1

5c[1].
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Figure 2: Problem 4: Here is a spacetime diagram of the situation. The blue
stripe is the spaceship with the laser at the tail and the button in the nose. At
the point when the tail of the other is lined up with the nose/button, the button
is pushed. the signal from the button travels down the spaceship with a max
velocity of c (the red line). When it reaches the tail of the blue spaceship, the
laser fires. Note that the second spaceship (orange) is still at the location of the
tail of the first and will get hit. IF the signal travels more slowly– eg at exactly
the same velocity as the second spaceship, that signal from the button will just
keep up with the tail and the laser would (if we neglect the distance between
teh spaceships) just hit it in the tail. If the signal travelled even more slowly, (
the path would be more vertical than the green line in this diagram) it would
miss. Note that just as John and Peter argue, in the frame of each spaceship (
t-x for the laser-button and t’x’ for the other) along the line t=const, the orange
spaceship is shorter than the blue, while along the time t’ constant (x’ axis) the
blue spacship is shorter than the orange. Ie, both Peter and John are right in
their observation of which spaceship is shorter in the different frames, but this
is irrelevant as what is important is the speed of the signal from the nose to the
laser canon in the tail.
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