
Physics 200-04
Heisenberg Quantum Theory

Instead of trying to follow history at this point, let us vear off and dis-
cuss modern quantum theory. I will for the next large number of lectures
be following Heisenberg rather than Schrödinger. This is not least because
I feel that the Heisenberg development is much more true to our modern
concepts of what quantum mechanics is. The Schroedinger approach (which
is mathematically completely equivalent, as Schroedinger showed in 1927)
is I believe misleading as to the content and essential structure of quantum
mechanics. This position is somewhat of a minority. Most textbooks follow
Schroedinger, as being more intuitive. Only Feynmann in his Feynman lec-
tures follows the Heisenberg course that I know of, for very similar reasons to
mine. Toward the end of the course I will introduce you to the Schrödinger
approach, the wave mechanics, rather than the matrix mechanics approach.

Let us start with the system that Stern and Gerlach found. They found
that silver atoms seemed to have a very strange property. They had a mag-
netic moment– they acted like a little magnet, but that magnet it seemed
could have only two orientations. An inhomogeneous magnetic field would
either exert a force up on the atom, or and equal force down. Those two
discrete forces were all that seemed to exist.

This was allied with the fact that the atom seemed to have two (low)
energy levels, which were degenerate if there was no external magnetic field,
but became non-degenerate (ie had different energies) if a magnetic field was
placed onto the atom. Now one usually would associate a little magnet with
having a variety of orientations– there should one would think be a whole
variety of orientations of the magnet with respect to the magnetic field, which
would produce a whole variety both of energies in a magnetic field, and forces
in an inhomogeneous field.

Thinking a bit, it becomes clear that the two-valuedness of the forces fits
in with the two-valuedness of the energy. Imagining the particle to be in the
lower energy state. Now if the field were inhomogeneous, the particle would
like to lower its energy still more. Ie, it would like to move into an even
stronger field, where the internal energy was even lower. Ie, there would be
a force on the particle pushing it toward a stronger field.

Similarly, if it were in the upper energy level, it would want to decrease
that energy. Ie, it would want to move into a region where the field were
weaker. Since there are only two energy levels, there would be only two
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possible forces on the particle.
In Matrix mechanics, we can represent the state of the particle by a

vector in a two dimensional space. The vector v1 =
(

1
0

)
would be used to

represent the upper energy level, and the vector v2 =
(

0
1

)
will represent

the lower energy level. To represent the energy itself, which is called the
Hamiltonian for reasons we will not go into now, we write a matrix

H =
(
E1 0
0 E2

)
(1)

We note that

Hv1 = E1v1

Hv2 = E2v2 (2)

Ie, the vectors v1 and v2 are the eigenvectors of the matrix H.
Following Dirac, we will also use a special symbol to represent these

vectors. The notation we will use is

|E1〉 = v1

|E2〉 = v2 (3)

This symbol is to be taken as a whole. The 〉 is NOT a greater than symbol.
The whole thing, |...〉 is the symbol for the vector. The contents between the
| and the 〉 is used to identify which particular vector one is talking about.
This whole symbol |...〉 is called a ket-vector.

One of the things which we will be using a lot of is another type of vector,

the Hermitean adjoint, or the Dirac adjoint of these vectors. Thus if v =
(
α
β

)

is some vector with complex coefficients, then the vector v† = (α∗ β∗ ) is
the Hermitean or Dirac Adjoint. Dirac gave these vectors a special symbol
and name, namely 〈...|, which he called bra-vectors. This had nothing to do
with women’s undergarments. Rather they come from bracket– bra-ket, with
the idea that 〈|...|〉 forms a sort of bracket around the stuff inside.

Thus

〈v| = (|v〉)† = (|v〉)∗T (4)
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The symbol stuck inside the ket or bra vector is simply there to tell the
reader which vector is being refered to. It is the name of the vector. Thus
the above equations can be written

H|E1〉 = E1|E1〉 (5)

which is to say that the ket vector |E1〉 is the eigenvector of the matrix H
with eigenvalue E1. The vector |E1〉 is just another name in this case for(

1
0

)

Thus in the case of the energy H and the two eigenvectors, what we
have done is to represent the possibilities for the two physical states by two
dimensional complex vectors, and the values of the energy by the eigenvalues
of the matrix H.

Now, if we stick the particle into the state |E1〉, sometimes a physical
process will change it into the state |E2〉 and sometimes something can change
|E2〉 into |E1〉.

The simplest kind of transformation is to use the matrix

S =
(

0 1
1 0

)
(6)

Now we have S|E1〉 = |E2〉 and S|E2〉 = |E1〉. (recall what |E1〉 means in
terms of matrices.)

Interlude
Consider A a Hermitean matrix. Then all of the eigenvalues of A are real.
Proof: Consider the eigenvalue equation

A|λ〉 = λ|λ〉 (7)

Then if we take the Dirac adjoint of both sides, we get

〈λ|A = (|λ〉)†A† = (A|λ〉)†
= (λ|λ〉)† = λ∗(|λ〉)† = λ∗〈λ| (8)

Ie, 〈λ| is also an eigenvector, but from the left side, of A with eigenvalue λ∗.
Now consider the expression 〈λ|A|λ〉. We can operate either to the left or to
the right with A. Is we can first multiply the bra times A and then the ket
or first A times the ket and then the bra. In the first case we get
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(〈λ|A)|λ〉 = λ∗〈λ||λ〉 (9)

In the second we get

〈λ|(A|λ〉) = λ〈λ||λ〉 (10)

〈λ||λ〉 = (α∗ β∗ )
(
α
β

)
= α∗α + β∗β > 0 (11)

we must have that λ∗ = λ, as required.
Continued with Matrix mechanics
Just as we represented the energies of the system by a matrix, with the

possible energies being the eigenvalues of that matrix, we can imagine rep-
resenting other physical qualities by matricees, and the values which we as-
sociate with that quality by eigenvalues of that matrix. In particular, the
transformation matrix S is a Hermitean matrix. Its eigenvalues turn out to
be plus or minus 1. and the two eigenvectors

S|S, 1〉 = +1|S, 1〉
S|S,−1〉 = −1|S,−1〉 (12)

Ie, the physical quality associated with the matrix S, whatever that is,
can have two possible values, ±1. If they have a value of 1, then the vector
which represents the state of the system with that eigenvalue is the vector
|S, 1〉. But if we write our what the equation S|S, 1〉 = +1|S, 1〉 means, we
get

(
0 1
1 0

)(
α
β

)
=
(
α
β

)
(13)

This gives us the equations

α = β
β = α (14)

Ie, the eigenvector |S, 1〉 is given by a vector of the form

|S, 1〉 =
(
α
α

)
= α

(
1
1

)
(15)
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This of course has an arbitrary constant. The usual way to specify that
constant is to also demand that the

〈S, 1||S, 1〉 = 1 (16)

which would then require that |α|2 = 1
2
.

Thus, we can represent both the particle having an energy E and the
particle having a quality S with the same mathematics and the same space
of vectors.

However there is something strange here. We can write the vector |S, 1〉
as

|S, 1〉 =
1√
2
|E1〉+

1√
2
|E2〉 (17)

Ie, the eigenvector which represents the quantity S having a value of 1 seems
to be some sort of combination of the two vectors representing the energy as
having the value E1 and E2. What could this mean? How can the system
have a combination of energies?

The first guess was that these coefficients represented the probability that
the the particle had energy E1 and E2. But Max Born, in a footnote of a
paper he wrote, suggested rather that it was the square of these coefficients
which was the probablility. Ie, if the particle has a value of 1 for the property
S then it will have energy E1 with a probability of 1

2
and will have energy

E2 with probability 1
2
.

One of the strange features of the physics of atoms is that probabilities
seemed to come naturally to the systems. Radioactive decay, for example,
seemed to follow a probability, rather than occuring deterministically. In any
interval on averge the same number of atoms would decay, but the actual
number fluctuated without apparent cause.

Another Theorem
If one defines a dot product between two vectors by |a〉 · |b〉 = 〈a||b〉 then

the eigenvectors of a matrix with different eigenvalues are different.
Proof: Consider the two vectors |1〉 and |2〉 to be eigenvectors of a matrix

A with different eigenvalues

A|1〉 = λ1|1〉
A|2〉 = λ2|2〉 (18)
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with λ1 6= λ2. Then by the same procedure we followed above, we have

〈1|A|2〉 = λ1〈1||2〉 = λ2〈1||2〉 (19)

Since the eigenvalues are not equal, the only way this equation can be true
is if 〈1||2〉 = 0.

Continued If we choose all of the eigenvectors always to have unit norm
(〈 || 〉 = 1) then we can always decompose the eigenvector of S in the following
way

|S, 1〉 = 〈E1||S, 1〉|E1〉+ 〈E2||S, 1〉|E2〉 (20)

Remember how to read this. The vector |S, 1〉 can be written as a number
〈E1||S, 1〉 times the vector |E1〉 plus another number 〈E2||S, 1〉 times a second
vector |E2〉. (since the vectors we have are all two dimensional, these two
vectors will always be enough to write any vector in terms of.)

To show this, we can multiply both sides by 〈E1| which gives us

〈E1||S, 1〉 = 〈E1||S, 1〉〈E1||E1〉+ 〈E2||S, 1〉〈E1||E2〉 (21)

But 〈E1||E2〉 = 0 because the two eigenvalues of H, namely E1 and E2 are
different, and thus by the theorem the two eigenvectors multiplied together
are zero.

Also, by assumption, all eigenvectors have unit norm, so 〈E1||E1〉 = 1.
Thus the above equation is consistant, since we get 〈E1||S, 1〉 = 〈E1||S, 1〉.

We can also multiply the vector |S, 1〉 by itself. Since its norm is by
assumption unity, we get

1 = 〈S, 1||S, 1〉 = ((〈E1||S, 1〉)∗〈E1|+ (〈E2||S, 1〉)∗〈E2|) (〈E1||S, 1〉|E1〉+ 〈E2||S, 1〉|E2〉)
= 〈E1||S, 1〉)∗〈E1||S, 1〉〈E1||E1〉+ 〈E1||S, 1〉)∗〈E2||S, 1〉〈E1||E2〉

+〈E2||S, 1〉)∗〈E1||S, 1〉〈E2||E1〉+ (〈E2||S, 1〉)∗〈E2||S, 1〉〈E2||E2〉
= |〈E1||S, 1〉|2 + |〈E2||S, 1〉|2 (22)

Thus, if we interpret the square of the coefficient of the |E1〉 term as the
probability that the particle has energy E1 if it is in the 1 eigenstate of S,
and the square of the coefficient of the |E2〉 term as the probability that
the particle has energy E2 if it is in the 1 eigenstate of S, then the total
probability adds up to 1, as it should. Ie, it should be in one or the other of
the energy states.
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It is thus at least consistant to argue that |〈E1||S, 1〉|2 is the probability
that if the particle is in the 1 eigenstate of S then has energy E1. Note that
we can interpret it the other way as well. Since

|〈E1||S, 1〉|2 = 〈E1||S, 1〉(〈E1||S, 1〉)∗
= (〈S, 1||E1〉)∗〈S, 1||E1〉 (23)

we can also interpret this same expression as the probability of the particle
having S with value 1 in the state |E1〉.

It was on this question, the question of probabilities, that first Einstein,
and eventually Schrödinger as well finally gave up on quantum mechanics.
However, all experiments indicate that this is valid. One example is the
Stern-Gelach experiment carried out consecutively.

Quantum Rules– Kinematics
1) Any physical observable is represented by a Hermitean matrix. The

eigen-values of that matrix are the possible values that observable can have.
2) If a system has a certain value for a particular observable, then that

situation is reprented by the eigenvector for that eigenvalue for that matrix.
This eigenvector is called the state of the system. The state is always
normalised (ie has unit norm v†v = 1 or 〈v||v〉 = 1.

3) If the system has some generic state |ψ〉, and if |a〉 is the eigenvector
for operator A with eigenvalue a, then the probability that the system has
value a for A is

Prob(a) = |〈a||ψ〉|2 = 〈a||ψ〉∗〈a||ψ〉 (24)

Example
Let us say that the matrix B represents some phyisical property of a

”two-level” system (ie a system with at most two possible values for any
physical property). Let

B =
(

1 1
1 1

)
(25)

We can clculate its eigenvectors by solving the equation

Bv = λv (26)
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or if we take v =
(
α
β

)

α + β = λα
α + β = λβ (27)

Solving the second for β and substituting into the first

α +
1

λ− 1
α = λα (28)

or

((λ− 1)2 − 1)α = 0 (29)

This will only have a non-zero solution if λ2 − 2λ = 0 or λ is either 0 or 2.
If λ is 0, then the eigenvector has α = −β or

|B, 0〉 = α
(

1
−1

)
(30)

If we want it normalized, we need α = 1√
2
. Thus the normalised eigenvector

is

|B, 0〉 =
1√
2

(
1
−1

)
(31)

For the eigenvalue 2, we find that α = β and the normalized eigen-vector
is

|B, 2〉 =
1√
2

(
1
1

)
(32)

Let us say that the state of the system is given by the normalised vector

|ψ〉 =
1

5

(
4
3i

)
(33)

Then the probability of the system having value 0 for B is

|〈B, 0||ψ〉|2 =

∣∣∣∣∣
1√
2

( 1∗ (−1)∗ )
1

5

(
4
3i

)∣∣∣∣∣

2
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=

∣∣∣∣∣
1√
50

(4 + 3i)

∣∣∣∣∣

2

=
1

2
(34)

Clearly the probability of having value 2 for B is also 1
2
.

Comment
This is clearly a very different system than classical mechanics. Firstly

in classical mechanics a system either has or does not have a certain value
for any particular attribute. A particle is described by a generic position, x
say, and a generic momentum p. These variables can take a variety of values,
but the values are not specifically encoded in the form of the variable. For
example you would use exactly the same variable to encode a particle which
could only live in a universe with values from 0 to 1 as one with any possible
value. In quantum mechanics the possible values that the variable can take
are already encoded in the representation, the matrix that represents that
attribute.

In classical physics the value of a variable is encoded in the theory by
simply giving the variable that value. If you say that a particle with po-
sition represented by x is located at position 5 then you simply substitute
5 everywhere in the expressions where you see x. In quantum mechanics
the mechanism is different. You do not change the the representation, the
matrix, you change the state. If you want to represent the fact that the at-
tribute associated with the matrix B has value 0 say, then you do not change
B anywhere, you change the vector representing the state of the system to
the eigenvector of B with eigenvalue 0. Ie, the representation of the state
of the world is separated from the representation of the attributes. You do
NOT substitute 0 everywhere where you see B.

Furthermore, a system need not have a value for B. In classical physics
you can imagine that all attributes actually have a value, that anywhere in
your expressions where you see x, you can imagine that it is some definite
number. In quantum mechanics on the other hand, you cannot do that. If
the state is not an eigenvector of B, then you cannot imagine that it really
is.
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