
Physics 200-04
Dynamics Con’t.

Let is look at an example of both the Heisenberg and Schrödinger solution
to a problem, that of the behaviour of an electron spin in a magnetic field.

The electron spin is related to the Pauli spin matrices by

Sx =
h̄

2
~sx · ~σ

Sy =
h̄

2
~sy · ~σ

Sz =
h̄

2
~sz · ~σ (1)

where the three vectors ~sx, ~sy, ~sz are choosen initially so that

Sx(0) =
h̄

2
σ1

Sy(0) =
h̄

2
σ2

Sz(0) =
h̄

2
σ3 (2)

Now, we know classically that a spinning charge has a magnetic moment as
well given by µx = g e

m
Sx and similarly for the y and z components of the

magnetic moment. Here e is the charge and m is the mass of the particle,
and g is a factor which measures how the charge in the spinning object is
distributed with respect to how the mass is distributed. A g greater than
one means classically that the charge is distributed further from the spin axis
than is the mass. The g-factor for the electron is very close to 2. There is an
interaction of any magnetic moment with a magnetic field that has the form
µxBx+µyByµzBz where B is the external magnetic field. Ie, this interaction
energy is trying to align the magnetic dipole with the field.

Let us assume that the external field is in the z direction, so that only
Bz is non-zero. This expression for the energy of a classical spinning system
is then

H = g
e

m
Sz = g

e

2m
h̄Bz

~Sz · ~σ (3)

The equations of motion for the three components of the spin are now

ih̄
dSx
dt

= [Sx, H] (4)
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and similarly for Sy and Sz. The easiest equation to solve is that for Sz since
H is proportional to Sz. Since any matrix always commutes with itself, we
have that

dSz
dt

= 0 (5)

and Sz will be equal to h̄σ3/2 for all time.
The equation of motion for Sx and Sy will be

ih̄
dSx
dt

=
geh̄Bz

2m
[Sx, σ3] (6)

and similarly for Sy. Writing these in terms of the 1,2,3 components, we have

ih̄
d~sx
dt

=
geh̄Bz

m
i~sx × ~ez (7)

where ~e3 has only its 3 component equal to 1 and the other two 0. Thus we
have

dsx1
dt

=
geh̄Bz

m
sx2

dsx2
dt

= −
geh̄Bz

m
sx1

dsx3
dt

= 0 (8)

Thus sx3 which starts out as 0 remains zero. The solution for the other two
components which obeys the initial condition that sx1(0) = 1 and sx2(0) = 0
is

sx1 = cos(ωt)
sx2 = −sin(ωt)

sx3 = 0 (9)

where

ω =

∣

∣

∣

∣

∣

geh̄Bz

m

∣

∣

∣

∣

∣

(10)

Similarly solving the equations for Sy gives

sy2 = cos(ωt)
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sy1 = sin(ωt)
sy3 = 0 (11)

The Spin components thus are

Sx =
h̄

2

(

0 (cos(ωt) + i sin(ωt))
(cos(ωt) − i sin(ωt)) 0

)

Sy =
h̄

2

(

0 (−i cos(ωt) + sin(ωt))
(i cos(ωt) + sin(ωt)) 0

)

(12)

The expectation value – the average value of the measured components
of the spin components are given by 〈ψ|Sw|ψ〉, where |ψ〉 is the state.One
has many options for the state. However, let us say that the state is

|ψ〉 =
1

5

(

3
4

)

(13)

(note this is purely an example– this state has no special significance)
Then we have

〈ψ|Sx(t)|ψ〉 =
h̄

50
( 3 4 )

(

0 (cos(ωt) + i sin(ωt))
(cos(ωt) − i sin(ωt)) 0

)(

3
4

)

=
h̄

50

(

12eiωt + 12eiωt
)

=
24

50
cos(ωt) (14)

Similarly we find that

〈ψ|Sy(t)|ψ〉 =
24

50
h̄ sin(ωt) (15)

and

〈ψ|Sz(t)|ψ〉 =
7

50
h̄ (16)

Ie, the average vector moves so that its z component stays constant, while
its x and y components rotate about the z axis with frequency ω.

Note that this is exactly the same as the motion of a spinning top classi-
cally. Ie, the equations of motion of the expectation value of the components
is the same as classical equations of motion.

This is a generic feature of quantum systems. The expectation values tend
to obey equations that are very similar to the classical equations of motion
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of the system. Note that if we do successive measurements on a system we
will not see this kind of motion. Instead we will see random jumping around.
However if we make measurements on a huge number of particles, all starting
in the same initial state and then average over the measured values, we do
tend to get something that looks classical.

Classical physics seems to be something which is an approximation to the
quantum physics if we only look at averages.

Schrödinger.

Let us look at the same problem from the Schrödinger point of view. Here
the operators corresponding to the physical attributes (ie the spin compo-
nents) do not change in time. Instead it is the state |ψ〉 which changes in
time. In particular we have

ih̄
d|ψ〉

dt
= H|ψ〉 (17)

Just as above

H =
geBzh̄

2m
σz (18)

Thus we have writing

|ψ〉 =
(

ψ1

ψ2

)

(19)

we have
(

ih̄dψ1

dt

ih̄dψ1

dt

)

=
ω

2
h̄
(

ψ1

−ψ2

)

(20)

Thus

ψ1 = ψ1(0)e−iωt/2

ψ2 = ψ2(0)eiωt/2 (21)

Note that this expression is not terribly transparent. In our example ψ1(0) =
3 and ψ2(0) = 4

We note that in many ways, solving the Schrödinger equation is much
simpler than solving the Heisenberg equation. For one thing we do not have
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to solve for our three separate matrices, just the one column vector |ψ〉. This
is true in general. The Heisenberg representation is almost never used to
actually solve problems. The Schrödinger representation is almost always
used. This does not mean that the Heisenberg is not important– it is very
important theoretically.

Just to give a very very very brief taste of the quantum mechanics of say a
single particle moving in the x direction. The usual attribute is the position
matrix X, together with the momentum P . As hinted, these two operators
are related by

[X,P ] = ih̄I (22)

We can write a general ket vector in terms of the amplitudes in the x basis–
ie in terms of the eigenvalues of the X matrix, which we will call |x〉. Thus,
a general state is

|ψ〉 =
∫

〈x||ψ〉|x〉dx (23)

where we have replaced the sum over the eigenvectors by this integral. Yes,
I know I said that the eigenvectors of X do not really exist, but let us ignore
this for now.

We will define the ψ(x) = 〈x||ψ〉 as the amplitudes for the state |ψ〉 to
have eigenvalue x. The probability to have the value x between x1 and x2 is
given by

∫ x2

x1
|ψ(x)|2dx.

Now we have to figure out what P is. P is supposed to be a matrix such
that XP − PX = ih̄I. Let me not prove it but just state that

P
∫

ψ(x)|x〉 =
∫

−ih̄
∂ψ(x)

∂x
|x〉dx (24)

Since P This definition of P acting on any vector expanded out in terms of
the X eigenvectors certainly obeys the required commutation relations.

From classical physics, we know that the energy of the harmonic oscillator
for example is

H =
1

2
(
P 2

m
+ kX2 (25)
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. We can use exactly this same expression for the Quantum harmonic oscil-
lator.

Just plugging in for what X abd P are we find

H|ψ〉 =
∫

(

−
h̄2

2m

∂2ψ(x)

∂x2
+
k

2
x2ψ(x)

)

|x〉dx (26)

and the eigenvalue equation for H, namely H|ψE〉 = E|ψE〉 becomes

int

(

−
h̄2

2m

∂2ψE(x)

∂x
+
k

2
x2ψE(x) − EψE(x)

)

|x〉dx = 0 (27)

In order that the left hand side be a zero ket vector, each coefficient of
the |x〉 must be zero. Thus one finally finds the differential equation

−
h̄2

2m

∂2ψE(x)

∂x
+
k

2
x2ψE(x) − EψE(x) = 0 (28)

If we solve this equation, we find that this energy is NOT continuous. It
comes in discrete lumps, as

E = (n +
1

2
)h̄ω (29)

where ω =
√

k
m

the classical angular frequency of the oscillator. This discrete
energy is NOT fed in from the beginning. Instead it is derived from the
definition of P and X and the energy as defined in terms of these quantities.

Note that there is no classical physics here, except maybe in defining the
energy in terms of P and X. There is no imposing some funny quantization
conditions onto the classical solutions (

∫

pq̇dt = nh). One simply defines the
dynamic variables X and P , demands the communation relation between
them, writes down the Hamiltonian and derives the fact that the energy
comes in discrete lumps.

Furthermore, if one looks at the Heisenberg equations of motion, P and
X obey exactly the same equation in this quantum system as the classical
equations do.
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