Physics 200-05
Assignment 8

1. Consider the two two-particle states given by

$$
\begin{array}{r}
|\psi\rangle=N_{\psi}(|+1 ; 1\rangle \otimes|-1 ; 1\rangle+|-1 ; 1\rangle \otimes|+1 ; 1\rangle) \\
|\phi\rangle=N_{\phi}(|+1 ; 1\rangle \otimes|+1 ; 1\rangle+|-1 ; 1\rangle \otimes|-1 ; 1\rangle) \tag{2}
\end{array}
$$

where $|+1 ; 1\rangle$ means the eigenstate with the +1 eigenvalue for the attribute Σ_{1} in the case of the first particle and Ξ_{1} for the second. What are possible values for the normalisation factors N_{ψ} and N_{ϕ} ? What is the inner product $\langle\phi||\psi\rangle$.
(Do not try to expand out the direct products in terms of matrices.)
2. If Σ_{1} is the Pauli spin matrix for the first particle with matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and Ξ_{1} is the Pauli spin matrix for the second particle with the same matric $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, show in problem 1 that both $|\psi\rangle$ and $|\phi\rangle$ are eigenvectors of the matrix $\Sigma_{1} \otimes \Xi_{1}$. What are the eigenvalues?
3. Show expicitly that if

$$
\begin{align*}
|1 ; 3\rangle & =\binom{1}{0} \tag{3}\\
|-1 ; 3\rangle & =\binom{0}{1} \tag{4}
\end{align*}
$$

for each of the two particles, then the four dimensional vector

$$
\begin{equation*}
|1 ; 3\rangle \otimes|1 ; 3\rangle+|-1 ; 3\rangle \otimes|-1 ; 3\rangle \tag{5}
\end{equation*}
$$

cannot be writen as a simple product

$$
\begin{equation*}
|\chi\rangle \otimes|\xi\rangle \tag{6}
\end{equation*}
$$

for any choice of $|\chi\rangle$ and $|\xi\rangle$. Such a vector for two particles which cannot be written as a simple product of vectors for the two single particles is called an entangled state.
(In this case do expand the direct product in terms of matrices.)
[Note: in the physics literature, that \otimes symbol is almost always omitted. Thus $|\chi\rangle \otimes|\xi\rangle$ is written as $|\chi\rangle|\xi\rangle$ and you are expected to know that it is the direct product that is being used if you are refering to two separate particles. Similarly $\Sigma_{1} \otimes \Xi_{1}$ is written as $\Sigma_{1} \Xi_{1}$ where you are to remember that this is a direct product not a matrix product because Σ_{1} and Ξ_{1} belong to two separate particles. It is never correct to matrix multiply attributes which belong to separate particles.
4. Show that if I take

$$
\begin{equation*}
H=\frac{E}{2} \Sigma_{1}, \tag{7}
\end{equation*}
$$

in the Heisenberg representation any multiple of Σ_{1} does not change in time.

Show that the matrix

$$
\begin{equation*}
\Sigma_{x}=\cos \left(\frac{E}{\hbar} t\right) \Sigma_{2}-\sin \left(\frac{E}{\hbar} t\right) \Sigma_{3} \tag{8}
\end{equation*}
$$

solves the equation of motion for Σ_{x}.

$$
\begin{equation*}
i \hbar \frac{\partial \Sigma_{x}}{\partial t}=\left[\Sigma_{x}, H\right] \tag{9}
\end{equation*}
$$

(You will need to remember what the value is for the product of two Σ matrices)
5. Show that if $|\psi\rangle$ is a normalised vector which depends on time, that

$$
\begin{equation*}
\langle\psi \| \dot{\psi}\rangle+\langle\dot{\psi} \| \psi\rangle=0 \tag{10}
\end{equation*}
$$

where the dot denotes a time derivative. By taking the time derivative of

$$
\begin{equation*}
\langle a| A|a\rangle=a \tag{11}
\end{equation*}
$$

for an eigenvector $|a\rangle$ show that if A obeys the Heisenberg equations of motion that a does not change in time. (Note that in general $|a\rangle$ will change in time if A does.

