Physics 200-05
Assignment 7 Solutions

1. Consider the state vector

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{(2)}}\binom{1}{\frac{1+i}{\sqrt{2}}} \tag{1}
\end{equation*}
$$

a)What is the unit vector $|\phi\rangle$ orthogonal to this vector? Ie, $\langle\phi \| \psi\rangle=0$ ?
[1]

$$
\begin{equation*}
|\phi\rangle=\frac{1}{\sqrt{(2)}}\binom{\frac{1+i}{\sqrt{2}}}{-1} \tag{2}
\end{equation*}
$$

b) Show that the matrix $A=|\psi\rangle\langle\psi|-|\phi\rangle\langle\phi|$ has eigenvalues $\pm 1$ and eigenvectors $|\psi\rangle$ and $|\phi\rangle$. (Remember that $|\mu\rangle\langle\nu|$ is the product of a column vector times a row matrix, which is a 2 x 2 matrix if the $|\mu\rangle$ and $|\nu\rangle$ are 1x2 vectors.)

$$
\binom{a}{b}\left(\begin{array}{ll}
c & d
\end{array}\right)=\left(\begin{array}{ll}
a c & a d  \tag{3}\\
b c & b d
\end{array}\right)
$$

[2]

$$
\begin{array}{r}
(|\psi\rangle\langle\psi|-|\phi\rangle\langle\phi|)|\psi\rangle=|\psi\rangle\langle\psi||\psi\rangle-|\phi\rangle\langle\phi| \psi \\
=|\psi\rangle(1)-|\phi\rangle(0)=|\psi\rangle \tag{5}
\end{array}
$$

Ie, $\psi$ is an eigenvector of $A$ with eigenvalue 1 . Similarly

$$
\begin{array}{r}
(|\psi\rangle\langle\psi|-|\phi\rangle\langle\phi|)|\phi\rangle=|\psi\rangle\langle\psi||\phi\rangle-|\phi\rangle\langle\phi| \phi \\
|\psi\rangle(0)-|\phi\rangle(1)=(-1)|\phi\rangle \tag{7}
\end{array}
$$

2)Given that the probabilities for rain is
$1 \mathrm{~cm} \rightarrow .5$
$2 \mathrm{~cm} \rightarrow .3$
$3 \mathrm{~cm} \rightarrow .1$
$0 \mathrm{~cm} \rightarrow .1$
a) What is the expectation value for the rain amount? What is the uncertainty.
[2]

$$
\langle\text { rain }\rangle=\sum_{i} \operatorname{prob}^{\left(\text {rain }_{i}\right) \text { rain }_{i}=.5(1)+.3(2)+.1(3)+.1(0)=}
$$

$$
\begin{array}{r}
\Delta(\text { rain })^{2}=\sum_{i}{\operatorname{prob}\left(\text { rain }_{i}\right)\left(\text { rain }_{i}-<\text { rain }>\right)^{2}=.5(1-1.4)^{2}+.3(.2-1.4)^{2}+.1(3-1.4)^{2}+.1(0-}^{=} .5(.16)+.3(.36)+.1(2.56)+.1(1.96)=
\end{array}
$$

Thus $\Delta($ rain $)=.8$.
a) If there were 30 days on which the above were the forcast, on how many days would expect there to at least 2 cm of rain?
[2]
At least 2 cm means from the list either 2 cm or 3 cm . The probability of one of these is $.3+.1=.4$ Thus the probability of rain on any day is .4 . One would thus expect in 30 days that $.4(30)=12$ days of rain of at least 2 cm
3) Show that

$$
\begin{equation*}
[A, B C]=[A, B] C+B[A, C] \tag{11}
\end{equation*}
$$

where $A, B, C$ are matrices and $[A, B]=A B-B A$ is the commutator.

$$
\begin{align*}
{[A, B] C+B[A, C] } & =(A B-B A) C+B(A C-C A)  \tag{12}\\
& =A B C-B A C+B A C-B C A=A B C-B C A=\left[A, B 1 B^{2}\right] \tag{B16}
\end{align*}
$$

Show that if $X$ and $P$ obey

$$
\begin{equation*}
[X, P]=i \hbar I \tag{14}
\end{equation*}
$$

and if we define the Energy as

$$
\begin{equation*}
H=\frac{1}{2 m} P^{2}+\frac{k}{2} X^{2} \tag{15}
\end{equation*}
$$

where $m$ and $k$ are real numbers. Then

$$
\begin{equation*}
[X, H]=i \hbar \frac{1}{m} P \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
[P, H]=-i \hbar k X \tag{17}
\end{equation*}
$$

[2]

$$
\begin{align*}
& {[X, H]=X H-H X=X\left(\frac{1}{2 m} P^{2}+\frac{k}{2} X^{2}\right)-\left(\frac{1}{2 m} P^{2}+\frac{k}{2} X^{2}\right) X }  \tag{18}\\
= & \frac{1}{2 m}\left[X, P^{2}\right]=\frac{1}{2 m}([X, P] P+P[X, P])=\frac{i \hbar}{2}(I P+P I)=i \hbar \frac{1}{m} P \tag{19}
\end{align*}
$$

$$
\begin{equation*}
[P, H]=P\left(\frac{1}{2 m} P^{2}+\frac{k}{2} X^{2}\right)-\left(\frac{1}{2 m} P^{2}+\frac{k}{2} X^{2}\right) P \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{k}{2}\left(P X^{2}-X^{2} P\right)=\frac{k}{2}\left[P, X^{2}\right]=\frac{k}{2}([P, X] X+X[P, X]) \tag{21}
\end{equation*}
$$

But

$$
\begin{equation*}
[P, X]=P X-X P=-(X P-P X)=-[X, P]=-i \hbar I \tag{23}
\end{equation*}
$$

and thus

$$
\begin{equation*}
[P, H]=-i \hbar k X \tag{24}
\end{equation*}
$$

as required.
4) Given

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2}}\binom{1}{\frac{1-i}{\sqrt{2}}} \tag{25}
\end{equation*}
$$

find the expectation value and the uncertainty of the attribute represented by the matrix

$$
\begin{equation*}
\Sigma_{1}+\Sigma_{3} \tag{26}
\end{equation*}
$$

$$
\Sigma_{1}+\Sigma_{3}=\left(\begin{array}{cc}
1 & 1  \tag{27}\\
1 & -1
\end{array}\right)
$$

and
[2]

$$
\begin{gather*}
\quad\left\langle\Sigma_{1}+\Sigma_{3}\right\rangle=\langle\psi|\left(\Sigma_{1}+\Sigma_{3}\right)|\psi\rangle  \tag{28}\\
=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & \frac{1+i}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{\frac{1-i}{\sqrt{2}}}  \tag{29}\\
=\left(\begin{array}{ll}
\frac{\sqrt{2}+1-i}{2} & \frac{\sqrt{2}-1+i}{2}
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{1-i}{2}}=\frac{1}{\sqrt{2}} \tag{30}
\end{gather*}
$$

[1]

$$
\begin{align*}
\left(\Sigma_{1}+\Sigma_{3}\right)^{2}=\Sigma_{1}^{2}+\Sigma_{1} \Sigma_{3}+\Sigma_{3} \Sigma_{1} & +\Sigma_{3}^{2}  \tag{31}\\
& =2 I \tag{32}
\end{align*}
$$

and Thus
[1]

$$
\begin{array}{r}
\left.\langle\psi|\left(\Sigma_{1}+\Sigma_{3}-\frac{1}{\sqrt{2}} I\right)^{2}|\psi\rangle=\langle\psi|\left(\Sigma_{1}+\Sigma_{3}\right)^{2}-2 \frac{1}{\sqrt{2}}\left(\Sigma_{1}+\Sigma_{3}\right)+\frac{1}{2}\right)|\psi\rangle \\
=2-\frac{1}{2}=\frac{3}{2} \tag{34}
\end{array}
$$

and

$$
\begin{equation*}
\Delta\left(\Sigma_{1}+\Sigma_{3}\right)=\sqrt{\frac{3}{2}} \tag{35}
\end{equation*}
$$

