Physics 200-05
Assignment 6

1) What is the derivative with respect to time of the following matrices? Are they Hermitean matrices? In case a) find the eigenvectors. Remember, i in all equations is treated as just another variable, except that $i^{2}=-1$.
a)

$$
\left(\begin{array}{cc}
1 & e^{i \omega t} \tag{1}\\
e^{-i \omega t} & 1
\end{array}\right)
$$

b)

$$
\left(\begin{array}{cc}
\cos (\omega t) & i \sin (\omega t) \tag{2}\\
i \sin (\omega t) & \cos (\omega t)
\end{array}\right)
$$

2) What are the eigenvalues of the following matrices?
a)

$$
\left(\begin{array}{cc}
1 & 3 i \tag{3}\\
-3 i & -1
\end{array}\right)
$$

b)

$$
\left(\begin{array}{ll}
1 & 2 \tag{4}\\
2 & 0
\end{array}\right)
$$

3) a) Given the expression

$$
\begin{equation*}
A=\beta_{0} I+\vec{\beta} \cdot \vec{\Sigma} \tag{5}
\end{equation*}
$$

Show that the matrix

$$
\begin{equation*}
\frac{1}{\beta_{0}^{2}-\vec{\beta} \cdot \vec{\beta}}\left(\beta_{0} I-\vec{\beta} \cdot \vec{\Sigma}\right) \tag{6}
\end{equation*}
$$

is the inverse of A. What is the condition that the matrix A not have an inverse.
b) What is the inverse of the two matrices in problem 2
4) A particle is found by measurement to have the the value +1 for the physical attribute represented by the matrix Σ_{1}. What is the probability that if the physical attribute represented by the $\Sigma_{1}+\Sigma_{2}$ matrix is measured, its value is found to be the largest eigenvalue.
5) A particle is found by measurement to have the value of +1 for the attribute represented by Σ_{3}. Then the attribute Σ_{2} is measured and also found to have value +1 . What is the probability that if Σ_{3} is remeasured, its value is found to be -1 ?

