Physics 200-05
Assignment 6

1) What is the derivative with respect to time of the following matrices? Are they Hermitean matrices? In case a) find the eigenvectors. Remember, i in all equations is treated as just another variable, except that $i^{2}=-1$.
[Note - This question does not make clear whether I mean the original matrices or the derivatives. Thus either one could be used. However the student should state which]
a)

$$
\left(\begin{array}{cc}
1 & e^{i \omega t} \tag{1}\\
e^{-i \omega t} & 1
\end{array}\right)
$$

[1]

$$
\left(\begin{array}{cc}
0 & i \omega e^{i \omega t} \tag{2}\\
-i \omega e^{-i \omega t} & 0
\end{array}\right)
$$

Ie, you differentiate a matrix by differentiating each entry.

$$
\begin{equation*}
\frac{d}{d t} A=\lim _{\epsilon \rightarrow 0} \frac{A(t+\epsilon)-A(t)}{\epsilon} \tag{3}
\end{equation*}
$$

and since addition and subtraction are element by element and since multiplication (division) is also of each element, this leads to each entry being taken the derivative of.
[1]
This matrix is Hermitean although the derivative is not. $\left(e^{i \omega t}\right)^{*}=e^{-i \omega t}$
The eigenvectors of the original matrix are:

$$
A=\left(\begin{array}{cc}
1 & e^{i \omega t} \tag{4}\\
e^{-i \omega t} & 1
\end{array}\right)=I+\cos (\omega t) \Sigma_{1}-\sin (\omega t) \Sigma_{2}
$$

and thus the eigenvalues are
[1]

$$
\begin{equation*}
a=1 \pm \sqrt{\cos (\omega t)^{2}+\sin (\omega t)^{2}}=\{2,0\} \tag{5}
\end{equation*}
$$

For the case of the eigenvalue 0 , the eigenvector is
[1] (Half for vector and half for normalisation)

$$
\left(\begin{array}{cc}
1 & e^{i \omega t} \tag{6}\\
e^{-i \omega t} & 1
\end{array}\right)\binom{a}{b}=0
$$

or

$$
\begin{equation*}
b=-e^{-i \omega t} a \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
|0\rangle=a\binom{1}{-e^{-i \omega t}} \tag{8}
\end{equation*}
$$

To normalise this, we take

$$
1=\langle 0||0\rangle=a^{*}\left(\begin{array}{ll}
1 & -e^{+i \omega t} \tag{9}
\end{array}\right) a\binom{1}{-e^{-i \omega t}}=2 a^{*} a
$$

and thus we want $a=1 / \sqrt{2}$.
[2]
We can go through the same for the other eigenvector, however we can make it easier. The other eigenvector is orthogonal to this one. (the eigenvectors of a Hermitean matrix are orthogonal to each other). Ie, $\langle 0 \| \mid 2\rangle=0$ from which we immediately see that

$$
\begin{equation*}
|2\rangle=\frac{1}{\sqrt{2}}\binom{e^{i \omega t}}{1} \tag{10}
\end{equation*}
$$

b)

$$
\left(\begin{array}{cc}
\cos (\omega t) & i \sin (\omega t) \tag{11}\\
i \sin (\omega t) & \cos (\omega t)
\end{array}\right)
$$

[1]

$$
\left(\begin{array}{cc}
-\omega \sin (\omega t) & i \omega \cos (\omega t) \tag{12}\\
i \omega \cos (\omega t) & -\omega \sin (\omega t)
\end{array}\right)
$$

2) What are the eigenvalues of the following matrices?
a)

$$
\left(\begin{array}{cc}
1 & 3 i \tag{13}\\
-3 i & -1
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
1 & 3 i \tag{14}\\
-3 i & -1
\end{array}\right)=-3 \Sigma_{2}+\Sigma_{3}
$$

[1]
Thus the eigenvalues are $\pm \sqrt{(-3)^{2}+1^{2}}= \pm \sqrt{10}$.
b)

$$
\left(\begin{array}{ll}
1 & 2 \tag{15}\\
2 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
1 & 2 \tag{16}\\
2 & 0
\end{array}\right)=\frac{1}{2} I+2 \Sigma_{1}+\frac{1}{2} \Sigma_{3}
$$

[1]
so the eigenvalues are $\frac{1}{2} \pm \sqrt{2^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{1}{2}(1 \pm \sqrt{17})$.
3) a) Given the expression

$$
\begin{equation*}
A=\beta_{0} I+\vec{\beta} \cdot \vec{\Sigma} \tag{17}
\end{equation*}
$$

Show that the matrix

$$
\begin{equation*}
\frac{1}{\beta_{0}^{2}-\vec{\beta} \cdot \vec{\beta}}\left(\beta_{0} I-\vec{\beta} \cdot \vec{\Sigma}\right) \tag{18}
\end{equation*}
$$

is the inverse of A. What is the condition that the matrix A not have an inverse.
[1] for recognizing what $\vec{\beta} \cdot \vec{\Sigma}$ means. [1] for recognizing that $\Sigma_{i} \Sigma_{i}=I$ and [1] for $\Sigma_{i} \Sigma_{j}+\Sigma_{j} \Sigma_{i}=0$ for all $i \neq j$. Finally [1] for normalisation term and [1] for recognizing that if $\left(\beta_{0}^{2}-\vec{\beta} \cdot \vec{\beta}\right)=0$, then no inverse exists.

$$
\begin{array}{r}
\left(\beta_{0} I-\vec{\beta} \cdot \vec{\Sigma}\right)\left(\beta_{0} I+\vec{\beta} \cdot \vec{\Sigma}\right) \\
=\beta_{0}^{2} I * I+\beta_{0} \vec{\beta} \cdot(I \vec{\Sigma})-\beta_{0} \vec{\beta} \cdot(\vec{\Sigma} I-\vec{\beta} \cdot \vec{\Sigma} \vec{\beta} \cdot \vec{\Sigma}) \\
=\beta_{0}^{2} I * I-\vec{\beta} \cdot \vec{\beta} I=\left(\beta_{0}^{2}-\vec{\beta} \cdot \vec{\beta}\right) I \tag{21}
\end{array}
$$

And thus if we divide by $\beta_{0}^{2}-\vec{\beta} \cdot \vec{\beta}$ we get the identity matrix. Thus thatmatrix is the inverse of A (unless of course $\beta_{0}^{2}-\vec{\beta} \cdot \vec{\beta}=0$ in which case A has no inverse.
b) What is the inverse of the two matrices in problem 2
[1] each for finding β for these and [1] each for finding the inverse.

$$
\left(\begin{array}{cc}
1 & 3 i \tag{22}\\
-3 i & -1
\end{array}\right)=-3 \Sigma_{2}+\Sigma_{3}
$$

Thus the inverse is

$$
\begin{gather*}
\frac{1}{-\left((-3)^{2}+1^{2}\right)}\left(3 \Sigma_{2}-\Sigma_{3}\right)=\frac{1}{10}\left(\begin{array}{cc}
-1 & -3 i \\
3 i & 1
\end{array}\right) \tag{23}\\
\left(\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right)=\frac{1}{2} I+2 \Sigma_{1}+\frac{1}{2} \Sigma_{3} \tag{24}\\
\left(\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right)=\frac{1}{2} I+2 \Sigma_{1}+\frac{1}{2} \Sigma_{3} \tag{25}
\end{gather*}
$$

And thus the inverse would be

$$
\frac{1}{\frac{1}{4}-4-\frac{1}{4}}\left(\frac{1}{2} I-2 \Sigma_{1}-\frac{1}{2} \Sigma_{3}\right)=\left(\begin{array}{cc}
0 & -\frac{1}{2} \tag{26}\\
-\frac{1}{2} & \frac{1}{4}
\end{array}\right)
$$

4) A particle is found by measurement to have the the value +1 for the physical attribute represented by the matrix Σ_{1}. What is the probability that if the physical attribute represented by the $\Sigma_{1}+\Sigma_{2}$ matrix is measured, its value is found to be the largest eigenvalue.
[1] for recognizing what the first part says about the state of the system, [1] for the eigenvalues of $\Sigma_{1}+\Sigma_{2}$, and [1] for the largest eigenvector. [1] for the amplitude (either as below or some other method) and [1] for the probability.

The eigenvector for the Σ_{1} matrix for the +1 eigenvalue is

$$
\frac{1}{\sqrt{2}}\binom{1}{1}
$$

The largest eigenvalue of $\Sigma_{1}+\Sigma_{2}$ is $+\sqrt{1^{2}+1^{2}}=\sqrt{2}$ The eigenvector is

$$
\begin{equation*}
\left(\Sigma_{1}+\Sigma_{2}\right)|\sqrt{2}\rangle=\sqrt{2}|\sqrt{2}\rangle \tag{27}
\end{equation*}
$$

or

$$
\left(\begin{array}{cc}
0 & 1-i \tag{28}\\
1+i & 0
\end{array}\right)\binom{a}{b}=\sqrt{2}\binom{a}{b}
$$

or

$$
(1-i) b=\sqrt{2} a
$$

and

$$
|\sqrt{2}\rangle=b\binom{\frac{1-i}{\sqrt{2}}}{1}
$$

or after normalisation

$$
|\sqrt{2}\rangle=\frac{1}{\sqrt{2}}\binom{\frac{1-i}{\sqrt{2}}}{1}
$$

The probability if the state is

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

is

$$
\text { Prob }=|\langle\sqrt{2} \| \psi\rangle|^{2}=\left|\frac{1}{\sqrt{4}}\left(\frac{1+i}{\sqrt{2}}+1\right)\right|^{2}=\frac{2+\sqrt{2}}{4}
$$

5) A particle is found by measurement to have the value of +1 for the attribute represented by Σ_{3}. Then the attribute Σ_{2} is measured and also found to have value +1 . What is the probability that if Σ_{3} is remeasured, its value is found to be -1 ?
[1] for realising that after the second measurement the state is the eigenvector is Σ_{2} no matter what the initial state was. and [1] for finding the probability of Σ_{3}.

After the measurement of Σ_{2}, the fact that Σ_{3} was first measured and found to be +1 is irrelevant. Each measurement replaces the previous one. Thus the probability is $\frac{1}{2}$.

