
Physics 200-04
Assignment 5

1)Old Quantum Mechanics: The Bohr Sommerfeld Quantum rules stated
that if the classical orbit was closed (returned on itself) then the quantum
rule was that ∫

pq̇dt = nh (1)

where the configuration variable (eg the positions) is q, and p is the momen-
tum. Assuming that the momentum is p = mv = mq̇,(ie the dot denotes
derivative with respect to time) and we are looking at a harmonic oscillator

mq̈ = −kq (2)

Recall that the most general solution to this equation is

q = A sin
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where A and δ are constants. What is the total energy as a function of
A, k,m, and δ? Show that the quantum condition lead to the result

Eharm osc = nhν (4)

where ν is the frequency of the oscillator. (The true quantum answer is
E = (n+ 1

2
)hν)

The energy of a Harmonic oscillator is 1
2
(mv2 + kq2).where v = q̇. Thus,

the energy is
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kA2 (5)

The quantum integral is (where T is the period of oscillation)
∫ T

0
pq̇dt =

∫
m(q̇)2 (6)

=
∫
kA2sin(
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 dt (7)

=
1

2
kA2T = ET (8)

1



since the integral of the cosine funtion over one whole period is zero.
Now for a harmonic oscillator the period is independent of the energy.

Thus we get for the quantum condition that

ET = nh (9)

or

E = nh
1

T
= mhν (10)

as required.

2a)Consider the earth in circular orbit around the sun. What would the
be the difference in radius for two adjacent energy levels of the earth? (Re-
member that the quantization condition for the earth is that the momentum
of the earth times its velocity integrated over time around one orbit is equal
to an integer times h. In this case this integer is called the principle quan-
tum number. I want the difference in radii corresponding to adjacent integers
where one of the integers corresponds to the current orbit of the earth.) What
is the energy difference between these two orbits as a fraction of the earth’s
orbital energy?

Hint: You need to use the various pieces of information about Newtonian
orbits– Kepler’s laws, Newton’s laws for orbits, etc.

b)Bohr Correspondence: Show that the frequency of the emitted pho-
ton or graviton from the earth in circular orbit around the sun from the
decay between two adjacent principle quantum numbers for the earth ap-
proximately equals the orbital period of the earth. Ie, show from the first
part that the energy is proportional to K

n2 where K is a constant expressed
in terms of the masses of the earth and sun, and the Newtonian Gravi-
tational constant. Then show that the derivative of E with respect to n
(En − En−1 = En−En−1

(∆n=1)
≈ dEn

dn
) divided by h is just the orbital frequency for

the current radius of the earth’s orbit.
Bohr’s correspondence principle basically says that at large quantum

numbers the quantum system should behave like a classical system. Since for
a classical system one would expect the frequency of the emitted radiation
to equal the orbital frequency, the quantum frequency of transition between
adjacent levels should approximately be the classical frequency.
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[6]– [3]on each part. [1] for numerical
This is just the same as the orbit of the electron around the nucleus,

except that the constants change. We have

mv2

R
=
GMm

R2
(11)

as the acceleration/force balance equation. We also have the energy equation

E =
1

2
mv2 − GMm

R
(12)

Finally we have the quantizaton condition

nh =
∫
pvdt =

∫
mv2dt = mv2T (13)

where T is the period. We also have that v=2πR
T

. Thus

nh =
∫
m

(2πR)2

T
(14)

and from the acceleration equation

m(2π)2R
3

T 2
= GMm (15)

Solving the first for T and substituting into the second, we have

m(1π)2R3

(
nh

m(2πR)2

)2

= GMm (16)

or

R = n2 h2

(2π)2m2GM
(17)

or

n2 =
(2π)2m2GMR

h2

≈ 400(3× 1024kg)26.6× 10−112× 1030kg1.4× 1012m

(6.6× 10−34)2
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= 1.5× 10149 (18)

or

n ≈ 3.8× 1074 (19)

The difference in radii between n and n− 1 is

Rn −Rin− 1 =
h2

(2π)2m2GM
(n2 − (n− 1)2) =

h2

(2π)2m2GM
(2n− 1) ≈ 2R

n
(20)

Thus

Rn −Rn−1 ≈ 2
1.4× 1012m

3.8× 1074
= .73× 10−62m (21)

This is a very very very very small difference.
b) From part 1, we can also solve for the energy. Following the notes for

the energy of the H atom, we find that

E =
1

2
mv2 − GMm

R
= −GMm

2R
(22)

using the acceleration balance equation. But from the above we know what
R is, and thus find

E =
(2π)2G2M2m3

h2n2
(23)

The difference in energy between two levels is

En − En−1 = −(2π)2G2M2m3

h2

(
1

n2
− 1

(n− 1)2

)

=
(2π)2G2M2m3

h2

(
n2 − (n− 1)2

n2(n− 1)2

)

≈ (2π)2G2M2m3

h2

2

n3
(24)

The frequency is

ν =
∆E

h
=

(2π)2G2M2m3

h3

2

n3
= 3× 10−8/sec (25)
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or the period is one year as one would expect.
One can show this explicitly, and easily. E goes as 1

n2 while T goes as n3

(T 2 is proportional to R3 and since R goes as n2, T goes as n3.
Now,

nh =
∫
mv2dt =

∫
2KEdt (26)

But, by the virial theory for the inverse r power law potential, or from the
acceleration balance equation, the PE = −2KE so, that KE = −E. This
total energy is E = KE + PE = −KE. This gives the

nh = −
∫

2Edt = 2ET (27)

Differentiating both sides by n and recalling the power law behaviour of E
and T we have

h = −2
dE

dn
T − 2E

dT

dn
= +2

2E

n
T − 2E

3T

n
=
−2E

n
T =

dE

dn
T (28)

Thus we have

dE

dn
=
h

T
(29)

But dE
dn

is approximately En − En−1 for large n. Thus we immediately get
that

∆E ≈ h

T
(30)

The radiation emitted in making a transition from the nth orbit to the (n−
1)th orbit has just the frequency of the orbit, as one might expect.

3. Calculate the following complex operations: i) (2−5i)((1−3i)−(1+i))

(2− 5i)(−4i) = −8i− 20 = −20− 8i

ii) (5 + 10i)(1 + i)/(4− 3i)

(−5 + 15i)/(4− 3i) =
(−5 + 15i)(4 + 3i)

(4− 3i)(4 + 3i)
=
−65 + 45i

25
=
−13

5
+

9

5
i
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iii)Find the roots of the following equation, using complex numbers if
necessary

x2 + 2x+ 2 = 0 (31)

x =
−2±

√
4− 4(2)(1)

2
= −1± i

√
4/2 = −1± i

iv) Expand the expression (x+4i)(x−1+i)/(x−i) into a single expression
a+ bi where both a and b are real numbers. Assume x is a real number.

(x2 + (−1 + 5i)x− (4− 4i))(x+ i)

x2 + 1
=

x3 − x2 − 4x− 5x− 4

x2 + 1
+
x2 − x− 4 + 5x2 + 4x

x2 + 1
i

=
x3 − 5x2 − 9x− 4

x2 + 1
+

6x2 + 3x− 4

x2 + 1
i (32)

4. Multiply the matrices
i)

(
1 + i 1 + i
1− i 1− i

)(−1 i
−i +1

)
(33)

(−2i 2i
−2 2

)
(34)

ii) Find the transpose, the Hermetian transpose, and the inverse of the
matrix

(
1 + i 1 + i
1− i 1 + i

)
(35)

A =
(

1 + i 1 + i
1− i 1 + i

)
(36)

AT =
(

1 + i 1− i
1 + i 1 + i

)
(37)

A† =
(

1− i 1 + i
1− i 1− i

)
(38)

(39)
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To find the inverse, we need to find the matrix

A−1 =
(
a b
c d

)
(40)

such that
(

1 0
0 1

)
= AA−1 =

(
1 + i 1 + i
1− i 1 + i

)(
a b
c d

)
(41)

=
(

(1 + i)(a+ c) (1 + i)(b+ d)
(a+ c) + i(−a+ c) (b+ d) + i(−b+ d)

)
(42)

or

(1 + i)(a+ c) = 1 (43)

(1 + i)(b+ d) = 0 (44)

(a+ c) + i(−a+ c) = 0 (45)

(b+ d) + i(−b+ d) = 1 (46)

or

a+ c =
1

2
(1− i) (47)

a− c = −1

2
(1 + i) (48)

b = −d (49)

d =
1

2
i (50)

Thus

A−1 =
( −i

2
−i
2

1
2

i
2

)
(51)
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