
Physics 200-04
Assignment 3

1. Aberration: Assume that a star is seen to be at an angle of θ with the
positive x axis and assume that its location is in the x− y plane. Show that in
a frame travelling at velocity v with repect to the first frame along the x axis
the angle θ̃ is given by

tan(θ̃) =
sin(θ)

cos(θ) + v

√
1− v2 (1)

Show that to lowest order in v, this is the same as the expression for the angle
as for the non-relativistic aberration angle.

As a spaceship travels at very near the velocity of light, show that the stars
all become crowded into the forward direction.

The light is travelling from the star in direction θ toward the observer. The
components of wx and wy for the light are

wx = −cos(θ) (2)

wy = −sin(θ) (3)

since the velocity is c = 1 and the direction of the light is from the star to the
observer. In the new frame moving with velocity The change in wx and wy in
teh new frame is (using the change of velocities)

w̃x =
(wx − v)

1− wxv
(4)

w̃y =
√

1− v2
wy

1− wxv
(5)

This means that the tangent of the angle in the new frame is

tan(θ̃) =
w̃y
wx

=
√

1− v2
wy

wx − v
=
√

1− v2
−sin(θ)

−cos(θ)− v (6)

=
√

1− v2
sin(θ)

cos(θ) + v
(7)

To lowest order in v( Ie, taking a taylor series and keeping only terms up to
linear in v) we have

tan(θ̃) ≈ sin(θ)
cos(θ)+v ≈ tan(θ)(1− v

cos(θ)
(8)

which is exactly the non-relativistic expression for the aberration.
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We note that for all θ less than π/2, the expression for tan(θ̃) is smaller than
it would be if v = 0. Since tan(θ̃) is monotonic in θ̃, the smaller size means
that the angle θ̃ would be smaller than it would be if v = 0. Ie the stars are
further into the forward direction. This same is true in the backward direction,
where cos(θ) + v < 0, where the expression is more negative than for v = 0. Ie
all angles are smaller– the star images are displaced in teh forward direction.
If v is very near 1, then that deflection of the light is large and almost all the
angles are pushed into the forward direction ( all stars which obey cos(θ) > −v
are pushed into the forward half hemisphere.

(Ie, in star treck and star wars, as the space ship nears the speed of light, the
stars do not whoosh behind the starship, but all move in front of the starship).

Note that if θ is very small ( so that sin(θ) ≈ θ and cos(θ) ≈ 1, we have

θ̃ ≈ θ
√

1− v
1 + v

(9)

2.Twins Paradox: In class I gave one explanation of the twin’s paradox. This
will be another one. (It was one that I published in the American Journal of
Physics in the early 1980’s).

Two twins, Alice and Bob take trips. Alice’s trip is to stay at home. Bob
travels away at high velocity v, for a time T in Alice’s frame, and immediately
returns home with the same velocity. They both have telescopes to look at
the other. Before they left each carefully measured the other’s height (in a
direction perpendicular to the direction of travel). Each carefully observes the
other during the whole trip. By measuring the angular height of the other as
seen through the telescope, each can determine the distance that that the other
is away from himself by using

distance =
H

δθ
(10)

where H is the known height of the other and δθ is the measured height of the
other as seen through the telescope. Assuming that the velocity of light is c they
can thus calculate how long before he sees the other, the light left the other’s
position.

a) Show that all along the trip each ”sees” (after correcting for the time of
travel) the other’s clock tick more slowly by

√
1− v2.

b) On a graph, plot the path (distance away vs time as corrected for light
travel time) that the person sees the other travel. Ie, if

X(t) =
δθ(t)

H
(11)

where t is the time at which that angle δθ is measured by that observer, plot
t−X(t) vs X(t) for each observer seeing the other.
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Note you will probably need to use the aberration formula from problem
set 1 where you can assume that theta is very small. (Ie, the height over the
distance is small)

In particular see what happens to the height as measured by B at his
turnaround of A, and what this means for the distance he ascribes to A and the
time that the light left A.

Let us first analyse it from A’s point of view. The light from B at position
x takes x to reach A. Thus, at time t in A’s frame B will be at point vt and the
light from him will reach A at time τ = t + vt = (1 + v)t B’s clock will read a
time of

√
1− v2t at the time the light leaves. Thus, at time T, A will see B’s

clock reading
√

1− v2t =
√

1−v
1+V τ . A will also B’s height as

δθ =
H

vt
= H

(1 + v)

vτ
(12)

Thus at time τ , A will ascribe the distance XB=H
δθ= vτ

1+v
to B and the time τB =

τ − X = τ
1+v to B. She will see that B′s clock at that time reads

√
1−v
1+v τ =

√
1− v2τB .

We note that τ is exactly the time t as measured in A’s frame. Ie, this is for
A a consitant way of determining the time and location of B.

We can carry out the same analysis for the times t > T after B has turned
around. at the time t > T , B will be at v(2T − t). The light will take v(2T − t)
to reach A, and A’s clock will read τ = t + v(2T − t) when the light reaches
A. A will see the angular height of B to be δθ=H

v(2T−t)=H 1−v
2T−τ

. Again, using this

angular height to determine how far away B is and to ascribe the time to B
corrected for the light travel time from b to A as determined by the angular
height, one agains finds that B just follows the expected path in A’s frame. Ie,
using this technique, A will simply ascribe to B the position and time of A’s
frame. Similarly all along the path B’s clock will run

√
1− v2 slower than A’s

time.
For B the crucial idea is the above aberation formula, and in particular the

change in aberration when B turns around.
Let us look at the light travelling from A to B. Let us look at the lightwhich

leaves A at time t. It has to catch up to B who is travelling at velocity v. The
intersection will occur when c(t′ − t) = vt′ or t′ = t

1−v . If one had an observer
in A’s frame at that point and that time, that observer would see A to have
angular height of

δθ =
H

vt′
=
H1− v

t
(13)

But for B, the angular height is changed by the aberration formula from problem
1. Since the angle is small, we have (recalling that during the first part of the
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trip B is travelling away from A), we have

δθ̃ = =

√
1 + v

1− v δθ =

√
1 + v

1− v
H

vt′
(14)

=
H

v τ√
1−v2

(15)

where τ = t′
√

1− v2 is the reading on B’s clock. Thus at time τ B will see the

clock on A reading t = t′(1 − v) = τ
√

1−v
1+v . At this time B will regard A as

being at a distance XA = H
δθ̃

= vτ away. Ie, B will see A at its time τ in exactly
the same way as A sees B at the same time τ on A’s clock. In this part of the
trip, everything looks symmetric with respect to A and B.

However, when B gets to teh turn around point at his time τ =
√

1− v2T ,
things suddenly change. His velocity reverses, and more particularly, the aberra-
tion reverses. Suddently at time τ =

√
1− v2T when B sees the time t = (1−v)T

on A’s clock, The aberration switches from

δθ̃ =

√
1 + v

1− v δθ =

√
1 + v

1− v
H

vT
(16)

to

δθ̃ =

√
1− v
1 + v

δθ =

√
1− v
1 + v

H

vT
(17)

Ie, A suddenly looks smaller. By the way B defines how far away A is, this also
means that A suddenly gets further away. Furthermore, since A is further away,
the light has taken a longer time to reach B, and the time when the light left A
is further in the past than it was just before B turned around. Ie, B suddenly
sees A as ”instantly” becoming further away, and thus also further into the
past. Thus the path that B ascribes to A is that A travels away from B with

velocity v until the time T
√

1−v
1+v . At that time, A ”instantly”( ie without the

time showing on A’s clock changing) is seen by B to be at the location v
√

1+v
1−vT ,

and at the time (1− 2v)T
√

1+v
1−v . Note that this time will be less than zero (ie

according to B, A will suddenly be at a time earlier than the time at which A
left B if v > 1

2 .) From now on A will travel back toward B with velocity v, and
again with a slower clock than B’s time.

Ie, B will always deduce that A’s clock ticks slower than his own time does,
but that A suddenly (when B turns around) makes a trip back in time but
just enough so that the total time which is seen on A’s clock is 2T while B’s is√

1− v22T .

3.Doppler shift: A light flashes once a second (according to its own clock).
It is travelling with velocity .9c with respect to an observer, in the direction
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of the positive x direction and at a distance of 1 light day away along the y
direction. What is the frequency of the flashes as seen by the observer as a
function of time. What is the limiting frequency when the x value is very large
and negative, when x = 0 and when x is large and positive.

If the light is emitted at time t, the time it takes for the light to reach the
origin is

√
y2 + (vt)2 and will thus arrive at the origin at the time τ = t +√

y2 + (vt)2 The time as measured in the moving objects frame is t̃ =
√

1− v2t
Thus the relation between the time at which the light arrives at the origin and
the time at which it was emitted is

τ =
1√

1− v2
t̃+

√
y2 +

v2

1− v2
t̃2 (18)

The time between the reception of the pulses is

∆τ =
1√

1− v2
∆t̃+

1√
y2 + v2

1−v2 t̃2

v2

1− v2
t̃∆t̃ (19)

For large negative time t̃, the y2 term in the square root is negligible and

∆τ =
1− v√
1− v2

∆t̃ =

√
1− v
1 + v

(20)

Ie, the received frequency is higher than the frequency of the source.
At a time t̃ = 0 when the moving object is moving transversly to the observer,

the expression becomes

∆τ =
∆t√

1− v2
(21)

This is called the transverse doppler shift. The shift in the pulse frequency is
purely that due to the different rates at which the moving and stationary clock
tick. Finally if the clock is at very large positive time t̃, the expression is

∆τ =

√
1 + v

1− v∆t̃ (22)

which is larger than the ticks of the source.

4. An hydrogen atom of rest mass energy 1Gev emits a photon with energy
10 ev. What is the rest mass of the H atom after the emission? If the photon
had an energy of .5GeV, what would the rest mass energy of the H atom be
afterward.
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This is just a specific application of the problem done in class. There we
found that

m2 = M2 − 2εM (23)

was the relation between the masses. Since we are measuring the masses and
teh energy in the same units in this problem, the two possibilities are

m2 = (1GeV )2 − 2(10ev)(1GeV ) = 1018ev − 10(109eV ) = .999999991018GeV (24)

or

m =
√
M2 − 2εM ≈M − ε (25)

which means that the mass of the resultant particle is just 10ev smaller than
1GeV.

If the energy is .5GeV however, the mass of the final partile is

m2 = M2 − 2εM = 0 (26)

since 2ε = M . Ie, the other particle must also be a photon.

5. This problem is taken from Wheeler and Taylor (6.5)
A structure as in figure 1 is such that the projection of the structure A

would just touch the detonator when the flanges of figure A just touch the bars
of Figure B. Now A is shot at B at a sizeable fraction of the speed of light.
In the frame of figure B, A is shortened and thus the flanges will touch the
bars of A before the projection touches the detonator, and will stop A befor
the projection hits the detonator. In A’s frame however, B is shorter, and the
projection of A hits the detonator before the flanges touch B and the bomb is
detonated.

Is the bomb detonated or not? What is wrong with the argument that
predicts the opposite?

This is precisely the same as the pole in the barn problem. We see that
depending on which frame we look at the problem in, either the front of the T
hits the detonator before the flanges hit the ends of the U, or the flanges hit
first. But this means that the flanges hitting and the end of the T hitting the
detonator are spacelike separated. Thus no signal can travel from one of those
events to the other. In the frame of the U, the flanges hit first. But no signal
can be sent from teh flanges to the end of the T, and thus nothing can stop the
end of the T before it hits the detonator. In this frame the flanges will hit the
ends of the U, and a shock wave will travel down the T, but the end of the T
will keep moving and hit the detonator long before the shock wave can reach
the end of the T. The T cannot stip instantly.

The detonator will go off.
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