
Physics 200-05
Assignment 2

1. Give the two matricees

A =




1 2 3
2 4 1
3 1 0


 (1)

B =




0 −1 0
1 0 0
0 0 1


 (2)

Find the matricees AB, BA, AT ,BT , and B−1. Does the matrix A represent
a rotation? Does the matrix B?

(Recall that a rotation is defined by the requirement that AT IA = I. Ie,
the identity matrix plays the roll of the metric G.

Solution:

AB =




2 −1 3
4 −2 1
1 −3 0


 (3)

BA =



−2 −4 −1
1 2 3
3 1 0


 (4)

AT =




1 2 3
2 4 1
3 1 0


 (5)

BT =




0 1 0
−1 0 0
0 0 1


 (6)

B−1 =




0 1 0
−1 0 0
0 0 1


 (7)

(8)

The matrix B is a rotation since BT = B−1. The matrix A is not since

ATA =




14 13 5
13 21 10
5 10 10


 6= I (9)
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2. i) Show that

sinh(θ) cosh(θ′) + cosh(θ) sinh(θ′) = sinh(θ + θ′) (10)

cosh(θ) cosh(θ′) + sinh(θ) sinh(θ′) = cosh(θ + θ′) (11)

Note the similarities and differences with the trigonometric formulas you are (I
hope) more familiar with.

ii) Using the above formula show that two successive Lorentz transformations
both along the x direction are such that if the velocity of transformation from
the first to the second frame is v1 and of the second to the third frame is v2

then the velocity from the first to third frame is

vf
c

=
v1

c + v2

c

1 + v1v2

c2
(12)

(Use the fact that tanh(θ) = v
c ). Ie, while the rapidities ( the ”angle” in the

hyperbolic function representation of the Lorentz transformations) of successive
Lorentz transformations add, the velocities do not.

sinh(θ) cosh(θ′) + cosh(θ) sinh(θ′) = (13)

1

4

(
eθ − e−θ)(eθ′ + e−θ

′)
+

1

4

(
eθ + e−θ)(eθ

′ − e−θ′
)

= (14)

=
2

4

(
eθ+θ

′ − e−θ−θ′
)

(15)

= sinh(θ + θ′) (16)

cosh(θ) cosh(θ′) + sinh(θ) sinh(θ′) = (17)

1

4

(
eθ + e−θ)(eθ

′
+ e−θ

′)
+

1

4

(
eθ − e−θ)(eθ′ − e−θ′

)
= (18)

=
2

4

(
eθ+θ

′
+ e−θ−θ

′)
(19)

= cosh(θ + θ′) (20)

Let us take c = 1.

t̃ = cosh(θ)t− sinh(θ)x (21)

x̃ = cosh(θ)x− sinh(θ)t (22)

(23)

and

˜̃t = cosh(θ′)t̃− sinh(θ′)x̃ (24)

˜̃x = cosh(θ′)x̃− sinh(θ′)t̃ (25)
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Substituting the first set of equations into the second we get

˜̃t = cosh(θ′)(cosh(θ)t− sinh(θ)x)− sinh(θ′)(cosh(θ)x− sinh(θ)t) (26)

˜̃x = cosh(θ′)(cosh(θ)x− sinh(θ)t)− sinh(θ′)(cosh(θ)t− sinh(θ)x) (27)

or

˜̃t = (cosh(θ′)cosh(θ) + sinh(θ′)sinh(θ))t− (cosh(θ′)sinh(θ) + sinh(θ′)cosh(θ))x (28)

= cosh(θ + θ′)t− sinh(θ + θ′)x (29)

˜̃x = (cosh(θ′)cosh(θ) + sinh(θ′)sinh(θ))x− (cosh(θ′)sinh(θ) + sinh(θ′)cosh(θ))t (30)

= cosh(θ + θ′)x− sinh(θ + θ′)t (31)

Now,

vf
c

= tanh(θ + θ′) =
sinh(θ + θ′)
cosh(θ + θ′)

(32)

=
cosh(θ)sinh(θ′) + sinh(θ) cosh(θ′)
cosh(θ)cosh(θ′) + sinh(θ)sinh(θ′)

(33)

=
tanh(θ) + tanh(θ′)
1 + tanh(θ)tanh(θ′)

=
v + v′

1 + vv′
(34)

Note that the velocities do not add (the final velocity is not just the sum of
the two velocities) even though the rapidities (θ and θ′) do add to give the final
rapidity.

3.) Do a Lorentz transformation in the x direction with vx = c/
√

3. Now in
the new frame do a Lorentz transformation in the y direction with the velocity
vy = c/

√
2. Show that the combined transformation is equivalent to a Lorentz

transformation along the direction at 45o between the x and y axes with a
velocity of

√
2/3c followed by a rotation around the z axis.

While the full set of Lorentz transformations form a group, the boosts (which
are the Lorentz transformations which leave two of the space-like directions the
same) do not. This observation eventually leads to what is called the Thomas
Precession, and is one of the purely kinematic terms which governs the pre-
cession of the spins of electrons in an atom. Two boosts along non-parallel
directions is equivalent to a Lorentz boost plus a rotation is a generic feature of
Lorentz transformations.

The easiest way to do this one is to do it via matrices. Again let us take
c=1. If v = 1/

√
3, then γ =

√
3/2. Thus the Lorentz transformation to this

new frame is

x′ =
√

3/2(x− t/
√

3) (35)

t′ =
√

3/2(t− x/
√

3) (36)

y′ = y (37)
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If v = 1/
√

2, then γ =
√

2 and the transformation from the prime to doubleprime
frame is

x′′ = x′ =
√

3/2(x− t/
√

3) (38)

t′′ =
√

2(t′ − y′/
√

2) =
√

3t− x− y (39)

y′′ =
√

2(y′ − t′ 1√
2

) =
√

2y + x−
√

3/2t (40)

A transformation along the x=y axis by a velocity
√

2/3, with a γ =
√

3
gives a transformation of

t̃ =
√

3(t−
√

2/3(x+ y)/
√

2) =
√

3t− x− y (41)

(x̃− ỹ)/
√

2 = (x− y)/
√

2 (42)

(x̃+ ỹ)/
√

2 =
√

3(
(x+ y)√

2
−
√

2/3t) (43)

We thus see that t̃ = t′′. We can also write

x̃ =
1 +
√

3

2
x+

√
3− 1

2
y +

t√
3

(44)

ỹ =

√
3 + 1

2
y +

√
3− 1

2
x− t√

3
(45)

Assuming that x′′ = cos(θ)x̃+ sin(θ)ỹ, and similarly for y′′ we require that

cos(θ)

√
3− 1

2
+ sin(θ)

√
3 + 1

2
= 0 (46)

since x′′ does not have any y in it. Thus we require tan(θ) = −
√

3−1√
3+1

. Checking

the other terms, this rotation gives us complete agreement.
In simpler terms, because the times, t̃ and t′′ are the same, and relation

between the double primed and the tilde coordinates cannot involve the time
in the transformation from one to the other. The also cannot involve z ′′ or z̃.
Thus they can only involve x′′y′′. The only such transformations are rotations.

4.) Show the consistancy of the special relativistic formulas. Consider the
following synchronization of clocks. Alice and her friend Amy get together at
the origin and sychronize their clocks to each other, ensuring that both show
exactly the same time and run at the same rate. Now Amy very slowly ( with
a velocity δv approaching zero) moves away from Alice to a location X along
Alice’s x axis. Show that in Alice’s frame, the time on Amy’s clock at X will
be synchronized with her clock. ( Show that in the limit as δv goes to zero, the
time difference between Amy’s time to get to the location X and Alice’s time
for Amy to get to X are the same.) Now let us look at this process from Bob’s
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point of view, who is moving with velocity v with respect to Alice. Show that
Bob will calculate the difference between Amy’s time to get to X and Alice’s
time is vX

c2
√

1− v2

c2

.

Hint, use the expression for the rate of Alice’s and Amy’s clocks according
to Bob (time dilation) and look at the difference to lowest order in δv. Find
the time it takes Amy to get to the point X and express the time difference in
terms of X.

For Alice, Amy’s clock will tick at the rate

tamy =
1√

1− δv2
tAlice. (47)

For Amy to travel to the point X in Alice’s frame, she will have to travel for a
time X/δv. Thus in that time, Amy’s time will differ from Alice’s time by

tamy − talice =

(
1√

1− δv2
− 1

)
X

δv
≈ δv2

2

X

δv
=

1

2
δvX (48)

Ie, in the limit as δv goes to zero, the difference between Amy’s time and alice’s
time goes to zero.

Now let us look at this problem from Bob’s point of view. His time is related
to Alice’s time by

tbob−alice =
1√

1− v2
talice (49)

tbob−amy =
1√

1− (v + δv)2
tamy =

1−
√

1− δv2

√
1− (v + δv)2

talice (50)

but the trip takes a time of talice = X/δv. Thus for Bob, his time when Amy
reaches the point X is

tbob−alice =
1√

1− v2

X

δv
(51)

tbob−amy =
1√

1− (v + δv)2
tamy =

1−
√

1− δv2

√
1− (v + δv)2

talice (52)

≈ tbob−alice +
vδv√
1− v2

X

δv
= tbob−alice +

vX√
1− v2

(53)

Ie, Amy and Alice are not synchronized as far as Bob is concerned. Their times
differ because of the arbitrarily slow transport of Amy’s clock away from Alice.
No matter how slow the transport is, Bob will always say that Amy and Alice’s
clocks are not synchronized.
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